

Marco Polo Symposium 2009

Non-destructive investigation and large area thin film preparation technique (ArIS) of small samples

¹Frank E. Brenker, ²Laszlo Vincze, ²Bart Vekemans, ¹Sylvia Schmitz, ¹Aleksandra Stojic, ³Manfred Burghammer

¹Geoscience Institute Goethe University, Frankfurt, Germany ²Ghent University, Belgium ³ESRF, Grenoble, France

Non-destructive Analyses

Non-destructive Analyses

The measurement doesn't consume the sample

No sample preparation required

- no Carbon coating
- no surface polishing

No heating or other alteration of the sample

Non-destructive Analyses

eperation son and an appearance of the property of the propert The measurement doesn't the sample

No sample p

e polishing

ating or other alteration of the sample

NIM SALANIA

Pristin asteroidal sample material

Non-destructive S-XRF and S-XRD at Stardust samples

© NASA / JPL

European Synchroton Radiation Facility

© ESRF

Non-destructive S-XRF and S-XRD down to the nanoscale

32.9 μg/cm²

0.5 μ**g/cm**²

0.98 μg/cm²

Brenker et al. 2009

Non-destructive S-XRF and S-XRD down to the nanoscale

No isotopic information!
Only limited structural information!

Thus, sample manipulation is needed at a certain point

Nano-SIMS on circum stellar grains

Vollmer et al., 2007

FIB - Sample Preparation

FIB - Sample Preparation

FIB - Sample Preparation

FIB – Sample Preparation

FIB - Sample preparation

You first have to know what is important!

Thus, the better way: Make the whole sample electron transparent!

New approach: Large Area Thin Film preparation Argon Ion Slicing - ArIS

Large Area Thin Film preparation Argon Ion Slicing - ArIS

Large Area Thin Film preparation Argon Ion Slicing - ArIS

Argon Ion Slicing - ArIS

Argon Ion Slicing - ArIS

Your turn! We need samples!

Thus, good luck and thank you for your attention!