EUCLID Spectroscopy

Andrea Cimatti

University of Bologna
Department of Astronomy

& the EUCLID-NIS Team

"Observing the Dark Universe with EUCLID", ESA – ESTEC, 17 November 2009

DARK UNIVERSE

(73% Dark Energy + 23% Dark Matter)

Baryons (4%)

 $\approx 1\%$ accuracy on w and sensitivity to w(z)

- **■** Weak gravitational lensing
- **■** Type Ia Supernovae
- Baryonic Acoustic Oscillations
- Redshift-space distorsions
- **■** Integrated Sachs-Wolfe effect
- Clusters of galaxies
- Age redshift relation

Large scale distribution of Dark Matter

- **Expansion of the box:**
- \rightarrow Expansion rate H(z)
- ☐ Collapse of structures inside the box:
- → Gravitation

Need to cover Gpc³ volumes

3-D evolutionary map of the Universe at 0.5<z<2

Top Level Requirements

- □ Number of spectroscopic redshifts > 5×10^7
- □ Redshift accuracy $\sigma_z/(1+z) \le 0.001$
- \square Redshift range 0.5 < z < 2
- □ Sky coverage \geq 20,000 deg²
- □ Deep Survey: 2 magnitudes deeper, ≥ 40 deg²
- □ Mission duration \le 5 years

Why spectroscopy?

Why from space?

Why near-infrared?

Why spectroscopy?

Why going to space?

- \square Sky background : stable and $\ge 500x$ lower
- □ No atmospheric emission and absorption lines
- Homogeneous and uniform data with clean selection function
- \square Higher redshifts (e.g. 1.5<z<2+) = higher accuracy on w(z)
- Survey speed
- ☐ EUCLID multi-probes = control of systematics (same timescale!)

Why in the near-infrared?

- Instantaneous coverage of 0.5 < z < 2 with Hα emission $(1 2 \mu m)$
- ☐ Much less affected by dust extinction than optical
- □ Rest-frame optical spectra → high legacy value

Slitless spectroscopy (baseline) Star-forming galaxies Hα emission at 0.5<z<2 104 dN(>f_{lim})/dz (deg⁻²) 5000 z=1.340 Fixed faint-end slope $\alpha = -1.35$ Steepening $-1.35 < \alpha < -1.6$ 1000 z=1.113 z=0.742 1.5 Redshift Wavelength (A)

DMD "slit" spectroscopy (option) All types of galaxies at 0 < 7 < 2.5 selected

All types of galaxies at 0 < z < 2.5 selected in the H-band ($\lambda_{obs} \approx 1.6 \ \mu m$) ($H_{AB} < 22$)

Digital Micromirror Devices (DMDs)

TI "Cinema" DMD arrays of 2048×1080 independent mirrors (14 x 14 μm each)

- → Never used in space
- → Lab tests ongoing (Visitech+LAM+ESA)

Can E-NIS meet the requirements?

Twofold study

Direct Image

Slitless Dispersed Image

Mitigation of "confusion" (1): Multiple roll-angles

Mitigation of "confusion" (2): Multiple filters

Spectral "confusion" does not exist with DMD spectroscopy

Stronger background in slitless spectroscopy H_{lim}≈19.5 (vs 22, DMD)

Slitless limiting line flux (unresolved source): F>4x10⁻¹⁶ erg/cm²/s S/N=7 at 1.6 µm

Science

The power of E-NIS to constrain w(z)

- □ FoM(E-NIS+Planck) \approx 310
- □ FoM(WL+Planck) ≈ 480
- □ FoM(ENIS+EIC+Planck) \approx 1500 (150x better than now!)
- □ E-NIS = DETF Stage IV experiment

Additional Science (slitless)

- Arr $\geq 65 \times 10^6$ galaxies & AGNs: star formation, coevolution of distribution functions, environment...
- \square Clusters of galaxies (mostly at z < 1)
- Clustering and halo statistics
- ☐ The largest unbiased survey for high-z QSOs
- \square Most luminous objects at z > 7 (*Deep Survey*)
- Our Galaxy (ultracool dwarfs, IMF...), +GAIA
- □ SNe (Deep Survey)
- Synergy with VIS/NIP, multi-λ surveys,

High

value!

Additional Science: the extra gain with DMD spectroscopy

	DMD		Slitless	
Science Case	Wide	Deep	Wide	Deep
Physics of galaxies	0	0		
Galaxy evolution		0	0	0
High-z galaxies		0		0
High-z QS0s		0	0	
Galaxy clusters z<1	0	0	0	
Galaxy clusters z>1	0	0		
Early type galaxies	0			0
Our Galaxy	0	0	0	0

- Unfeasible
- Limited to most luminous objects
- Biased towards some class(es) of objects
- Feasible

E-NIS can cover 2π sr and 0.5 < z < 2 in < 5 years

L-MIS can cover 211 Sr and 0.5~2~2 1				
	Requirements are met!			
Feature	Slitless			
Survey Type	Redshift			
Limiting flux	4×10 ⁻¹⁶ erg/cm ² /s (line)			
	H ≈ 19.5 (AB)			
N(galaxies)	≥ 6.5×10 ⁷			
Effective Volume	19 h ⁻³ Gpc ³			
Galaxy type	Star-forming			
Redshift range	0.5 < z < 2			
Redshift success rate	≥ 40%			
FoM (BAO)	1			
Legacy value	High			

can cover 2π er and 0.5 < 7 < 2.5 in < 5.5 vegre

 4×10^{-16} erg/cm²/s (line)

DMD

 $\geq 2 \times 10^8$

All

50 h⁻³ Gpc³

0 < z < 2.5

> 80%

 $\approx 2-3x$

SDSS-like!

Spectroscopic

 $H \approx 22.0 (AB)$

L-MIS Can cove		<u> </u>
	Requirements are met!	High gain
		88

Slitless

Redshift

 $\geq 6.5 \times 10^7$

19 h⁻³ Gpc³

0.5 < z < 2

≥ 40%

High

Star-forming

 $H \approx 19.5 (AB)$

Feature

Survey Type

Limiting flux

N(galaxies)

Galaxy type

FoM (BAO)

Legacy value

Redshift range

Redshift success rate

Effective Volume

to the

E-NIS team
ESST + WGs
National Agencies