

Redshift-space distortions with EUCLID: a key probe of the growth history of structure

Luigi Guzzo (INAF - Osservatorio di Brera, Milano) on behalf of the EUCLID team (EUCLID-NIS science team and EUCLID Cosmology Working Group)

Cosmic acceleration: a story with two sides...

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -\frac{8\pi G}{c^4}T_{\mu\nu} + \Lambda g_{\mu\nu}$$

Modify gravity theory [e.g. $R \rightarrow f(R)$]

"...the Force be with you"

Add dark energy

So, measuring the equation of state w(z) is not the end of the story...

Cosmic acceleration can also be explained by modifying the theory of gravity [as e.g. in f(R) theories, Capozziello et al. 2005, or in multi-dimensional "braneworld" models, Dvali et al. (DGP) 2000].

 \rightarrow How to distinguish between these two options, observationally?

Growth of linear density fluctuations $\delta = \delta \rho / \rho$ in the expanding Universe (in GR):

$$\ddot{\delta} + 2H(t)\dot{\delta} = 4\pi G \langle \rho \rangle \delta$$

which has a growing solution:

$$\delta^+(\bar{x},t) = \hat{\delta}(\bar{x})D(t)$$

from which we define a growth rate

$$\rightarrow$$
 The growth equation (and thus the growth rate) depends not only on the expansion history $H(t)$ (and thus on w) but also on the gravitation theory (e.g. Lue et al. 2004)

$$f = \frac{d\ln D}{d\ln a}$$

UNDERSTANDING COSMIC ACCELERATION: THE QUEST FOR TWO FUNCTIONS

Measurements of the growth rate evolution f(z) break the degeneracy between models with same effective expansion history [thus same w(z)], but completely different physics (however, see Kunz & Sapone 2007)

How do we measure f(z)?

...and how it evolves with redshifts: probing a combination of the growth rate f(z) and the expansion rate H(z)

Einstein-DeSitter model

Borgani & Guzzo 2001

...or use weak gravitational lensing "tomography"

COSMOS: Massey et al. 2007

Peculiar velocities manifest themselves in galaxy redshift surveys as <u>redshift-space</u> <u>distortions</u>

(Kaiser 1987)

Peculiar velocities manifest themselves in galaxy redshift surveys as <u>redshift-space</u> <u>distortions</u>

redshift space

(Kaiser 1987)

$\xi(r_{p},\pi)$ from <z>=1, dz=0.2 slice of EUCLID redshift survey

(D. Bianchi Master Thesis, using BASICC simulation)

Extract β through Kaiser/Hamilton linear redshift-distortion model

$$P(k_{\parallel},k_{\perp}) = P(k) \left(1 + \beta \mu^2\right)^2 D(k\mu\sigma_p).$$

$$D(k\mu\sigma_p) = \frac{1}{1 + \left(k\mu\sigma_p\right)^2/2}$$

f(z) from redshift distortions: current status

$$f = b_L \beta$$

• 2dFGRS: Hawkins+ 2003

 SDSS main: computed from Tegmark+ 2005

• SDSS-LRG: Tegmark+ 2007, Cabre & Gaztanaga 2008 (see also Yamamoto+ 2008)

• 2SLAQ: Ross+ 2007 (gal), da Angela+ 2007 (QSO)

EUCLID redshift survey: f(z) from redshift-space distortions EUCLID - redshift distortions alone 1.2 20,000 deg² slitless survey $f(H\alpha) > 4 \times 10^{-16} \text{ erg cm}^{-2} \text{ s}^{-1}, \epsilon = 35\%$ 45 million redshifts at z>0.5 Rate $f_g(z)$ Monte Carlo scaling-law forecast, Guzzo et al. 2008 Growth 8.0 σ_{eta} Ab_L 0.44 DM+DE Time-Dependent Coupling 0.6 DM+DE Constant Coupling ACDM Fiducial Model ---- DGP Modified Gravity 2 redshift

(Fisher matrix forecasts, W. Percival)

Abate cosmic variance on redshift distortions by using two populations of tracers with different bias (McDonald & Seljak 2009)

(White, Song & Percival 2008)

EUCLID redshift survey: distortions from tracers with different bias

10

EUCLID $z \sim 1$ "galaxies" <n>=3 10⁻³ h⁻³ Mpc³

EUCLID $z \sim 1$ "groups" <n>=3 10⁻⁴ h⁻³ Mpc³

EUCLID $z \sim 1$ "clusters" <n>=5 $10^{-5} h^{-3} Mpc^{3}$

(D. Bianchi Master Thesis, using BASICC simulation)

Summary

- Redshift-space distortions are emerging as a primary cosmological probe for future dark energy spectroscopic surveys: a lot of activity in the community
- Reaching the ~5% accuracy level on $\delta\beta/\beta = \delta(f\sigma_8)/f\sigma_8$ feasible with current linear modelling and understanding of non-linear effects
- Pushing to ~1% errors will require to:
 - Go beyond Kaiser linear model (e.g. Scoccimarro 2004; Tinker et al. 2006)
 - Further extend Monte Carlo tests to optimize survey parameters and model application (validating Fisher matrix forecasts under fully realistic conditions)
 - Explicitly evaluate actual gain when using multiple bias tracers (McDonald & Seljak 2009, see White et al. 2009)
 - Properly account Alcock-Paczynski effect (see e.g. Sapone & Amendola 2007, Simpson & Peacock 2009): indications are that huge EUCLID volume helps breaking degeneracy between dynamical and AP distortions
- Overall, these results indicate that EUCLID will be able measure f(z) using zdistortions to a few percent accuracy over a broad redshift range, making this a primary probe of the origin of cosmic acceleration