Search for Earth-Like and Living Exoplanets

Antoine Labeyrie Collège de France

Towards an Exo-Earth Imager :

hypertelescope with coronagraph

- Simulation with 150 mirrors of 3 m
- 150 km array
- Exo-Earth at 3 pc , 30 mn exosure

Methods for detecting exo-Earths

- Visible: extreme coronagraphy with telescope > 2m (Bonneau et al. 1975, Moutou et al. 1998, Nisenson et al.2002)
- Infra-red :
 - Nulling interferometer (DARWIN, TPF)
- Or: Coronagraphic imaging interferometer (coronagraphic hypertelescope)
- Transits:
 - photometry with small aperture
 - imaging of resolved star with Exo-Earth Discoverer
- Doppler spectroscopy and astrometry of star 's reflex orbit (Mayor & Queloz 1997, Shao et al. 1997)
- Gravitational lensing: 2 candidate events, not confirmable

Detecting light from exo-Earths

• Essential for spectroscopic search of life, but difficult

 \bigcirc

- Weak luminosity with respect to parent star
 - 10^{-9} to 10^{-11} in the visible
 - 10⁻⁶ in the thermal infra-red (10 microns) (Bracewell 1978)
- But enough planet photons with a few square meters of collecting aperture
- Feasible in the visible with « extreme coronagraphy »

Atmospheric spectral features indicative of life

- O2, O3, CO2, H2O
- How conclusive ? O2 can be produced from H2O by photo-dissociation, under mineral catalysis

Detecting life from « green spots »

- Can be any color
- seasonal variations discriminate against mineral colors: phase advance of annual photosynthetic cycle with respect to temperature cycle
- Correlation with clouds

What 's a hypertelescope ?

- A « multi-element imaging interferometric array »
- Uses « densified-pupil » imaging to provide direct image
- Usable for coronagraphy

- Densify the pupil
- Preserve the center 's pattern

Principle of hypertelescopes

- Filled exit pupil, behaves like a conventional aperture
- Strong redundancy, improves dynamic range of image and coronography

Exo-Earth Discoverer:

a hypertelescope version proposed for DARWIN/TPF 100 -1000m flotilla of 37 mirrors, 0.8m size

artist concept by Boeing /SVS

Free-flyer element

(artist concept by Boeing/SVS)

Model of ultra-low mass free-flyer controlled by solar radiation pressure

Stretched membrane mirrors (Angel et al.)

Hypertelescope proposed for DARWIN and TPF

(Boccaletti et al., Icarus, May 2000)

coronagraph

densifier

M2

M3

M1

Correcting the aberration of a spherical mirror in the beam combiner

Diameter 2.7% of M1 at F/1

diametres: M1 –1 M2 –0.02738 M3 0.027

rayon M1: R=2 hauteur incidence HM=-0 position approchee M3: XD=1.025 chemir F/D(M1)=1 sortie=0.720741 deltafocus

diametres: M1 -1 M2 -0.034905 M3 -0.03536 soit %M1 = 3.536038 rayon M1: R=2 hauteur incidence HM=-0.5 sinus sortie SM=-0.66 position approchee M3: XD=1.025 chemin optique PL=3.051 focale resultante=0.82449 F/D(M1)=1 sortie=-0.569141 deltafocus =-2.500000E-03 mic = 6 champ ref =-1.010000E-04

Suitable for the Exo-Earth Discoverer

Infra-red detection: the sensitivity gain with hypertelescope coronagraphy (Boccaletti et al., Riaud et al., 2003)

• Pupil « nulling » mixes emission of λ/d sky patch with planet on the single detector pixel

• Image has sky and planet on distinct pixels in the hypertelescope case

Exo-Earth Imager in bubble form

- 400 km bubble array for 100km effective apertures
- 10,000 mirrors of 3m, 100 per effective aperture
- 1-km diluted flotillas also as focal correctors
- Static observing, hundreds of exo-Earths simultaneously

Diluted clam shell corrector, 1 km diameter

for a 100 km Exo-Earth Imager

- Mirror elements smaller than 1m
- Correction of spherical aberration and coma

Pupil densifier / and coronagraph

DARWIN, TPF or hypertelescope version? Pros and cons

- snapshot image improves rejection of infra-red background : exposures 10 to 100 times shorter
- Direct high-resolution image with hypertelescope
- Hypertelescope has more mirrors, of smaller size
- but 6 can suffice with scheme of Roddier & Guyon
- Detailed comparison needed

Conclusion:proposed steps for detecting exo-Earths and life

- Optional visible coronagraphic telescope, 2 to 6m
- And/or DARWIN-TPF or visible -IR hyperterlescope (Exo-Earth Discoverer, for general purpose imaging and exo-Earth coronagraphy)*

• Then (2015?): 100-km imaging interferometer (Exo-Earth Imager, also for general micro-arc-second imaging)

- * selection requires detailed study and testing