Three Micron Spectroscopy
of Hydrocarbons, HCN,
and Haze




Transmittance

0.8 -

2
fon
T

=
s

g.2

Ground-based 3mm spectr oscopy

0

I | |
3 3.2

lhﬁ

N.

Wavelength (pm)

| .
3.4




The data
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Features formed at avarlety of altltudes
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 HCN and CH, emission is high atitude fluorescence
» CH,D absorption forms at low altitudes

» CH4 emission/absorption lines present/absent at band center but absent/present at
band edge !



Radiative Transfer M odel

81 plane-parallel layers from surface to 1010 bar
Radiative transfer adopted from Chamberlain (1987)

Insert clouds/haze (continuum absorbing/reflecting layers) at various atitudes
(ignore multiple scattering).

Use Voyager T-P profile for low altitudes(below 1 mbar. Use high altitude profile (similar to
Yelle 1991) derived from CH, emission spectrum (Kim Geballe, & Noll 2000) assuming
constant mixing ratio at high altitude.

In each layer calculate vibrational excitation by radiation from attenuated sunlight and adjacent
layers, and deexcitation by collisions and spontaneous emission. Assume pressure-broadened
linewidths and include self-absorption.
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KGN (2000)
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HCN emission and C,H, absor ption

Previous analysis by us Geballe et al. (2002)
suggested that HCN might be highly overabundant in
the mesosphere, but used far too high a collisional
deexcitation rate, as pointed out by Y elle and Griffith
(2003).

Our re-analysis of lineintensitiesindicates HCN
€mission occurs over atemperature range of 140-
180K (300-600 km).

Together, these changes yield an HCN mixing ratio
consistent with previous atmospheric models and
with Y &G (2003).

The stratospheric C,H, abundance must be
drastically less than in most mixing ratio curvesin
the literature in order to reduce line emission and

produce net absorption, as observed.
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Evidence for high altitude clouds and/or haze
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More evidence for high altitude clouds and haze

No clouds or haze

Opaque, partly reflecting cloud layer at 10 mbar (50 km)

Opaque partly reflecting cloud layer at 10 mbar +
partly reflecting haze above 10mbar,
or extended haze optically thick below 10 mbar

Albedo (reflectivity)of haze must be
higher than at band center.
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The CH;D band and the 2.9nm window

10 mbar cloud and haze must be transpar ent.
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No clouds: absorption istoo strong g

100 mb opaque cloud deck: g

line depths about right, 3

but lines are too narrow. =

100 mb, 20% transparent cloud -

or opaque cloud with 80% cover age of surface:’%
Reasonable agreement 2

c

Supports conclusion of Griffith et al. (1998) that the surface of Titan is observe at 2.9mm.
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Summary

e CH, line emission confirms high altitude T-p profile of Yelle (1991)
* T... (HCN) ~ 140-180 K; mixing ratio is consistent with previous predictions.

« Stratospheric C,H, mixing ratio is 1-2 orders of magnitudes less than previous
atmospheric chemical models.

 High atitude cloud/haze layer at 10 mb (100 km) and above is identified. The
wavel ength-dependent albedo suggests that its particles are made of
hydrocarbons.

» Second cloud layer at 100 mb (50 km) identified; it is either 20% transmitting at
2.9um and covers the disk or is opague and blocks 80% of the surface from view.

« CH,D line profiles confirm that the surface of Titan is observed at 2.9um.



