DISR Science Team

- M. G. Tomasko, L. R. Doose, B. Rizk, P. Smith--University of Arizona
- R. West—Jet Propulsion Laboratory
- L. Soderblom—U.S.G.S.
- B. Bezard, A. Coustenis, E. Lellouch, C. deBergh, M. Combes--Paris Observatory
- Bernard Schmitt—Institute for Glaciology, Grenoble, France
- U. Keller—Max Planck Institute for Aeronomy, Lindau, Germany
- F. Gliem—Technical Institute of Braunschweig, Germany
- N. Thomas—University of Bern, Switzerland

DISR Science Objectives

Thermal Balance and Dynamics

>Solar deposition profile

>Radiative cooling profile and net radiative dynamical forcing

>Observed wind direction, speed vs. altitude

Aerosols and Clouds

>Optical properties, particle size, shape, number vs. altitude
>Morphology, extent of condensation clouds
>Altitude, optical depth of any thin layers seen on the horizon

Atmospheric Composition >Methane mixing profile >Argon mixing ratio >Possibly other absorbing gases

Nature of Surface >Physical state >Topography >Composition

Cycle Types for 4-6-8 Compression

Downward Direct Flux Vs. Altitude

Extinction Optical Depth Vs. Altitude

Downward Diffuse Flux Vs. Altitude

Total Downward Flux Vs. Altitude

Upward Flux Vs. Altitude

Altitude (Km)

Net Flux Vs. Altitude

Transmission Vs. Methane Abundance

Descent Imager/Spectral Radiometer Science Goals

- Heat Balance and Dynamics
 - Measurement of profile of solar heating rate
 - Computation of Thermal Cooling Rate Profile from gas composition and aerosol model
 - Measurement of wind speed and direction vs. altitude from drift seen in images
 - Measurement of wind shear profile from probe attitude throughout descent
- Measurement of gas composition
 - Methane mixing profile vs. altitude
 - Methane absorption coefficients at long path, cold temperature

Descent Imager/Spectral Radiometer Science Goals

- Aerosol and cloud properties
 - Measurement of scattering, extinction optical depth profiles at many wavelengths
 - Measurement of single scattering phase function, polarizing properties, and single scattering albedo vs. altitude and wavelength
 - Measurement of aerosol size and shape vs. altitude
 - Measurement of aerosol number density vs. altitude
 - Derivation of aerosol mass production rate and atmospheric vertical mixing
 - Detection of thin condensation layers in lower stratosphere from Side Looking Image Strips on every measurement cycle
 - Measurement of size, nature of possible tropospheric storms seen in images made from above

Descent Imager/Spectral Radiometer Science Goals

- Nature of surface
 - Measurement of vertical topography from pairs of mosaics at different altitudes
 - Measurement of visible, near IR reflectance spectra of many points on surface for compositional information
 - Correlation of surface morphology with visible and near IR reflectance measurements for nature of physical processes that form surface
 - Search for pools, streams, or lakes of liquid hydrocarbons that could serve as source for methane to atmosphere
 - Search for deposits of solid hydrocarbons ("tholins") that may rain out of atmosphere