The loss of the early Martian atmosphere and its water inventory due to the active young Sun

H. Lammer (1), Yu. N. Kulikov (2), N. Terada (3),
I. Ribas (4), D. Langmayr (1), N. V. Erkaev (5),
G. Jaritz (6), H. K. Biernat (1,6)

(1) Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6, A-8042 Graz, Austria
(2) Polar Geophysical Institute (PGI), Russian Academy of Sciences,
Khalturina Str. 15, Murmansk, 183010, Russian Federation
(3) Solar-Terrestrial Environment Laboratory, Nagoya University, Japan
(4) Institute for Space Studies of Catalonia (IEEC) and
Instituto de Ciencias del Espacio (CSIC),
E-08034, Barcelona, Spain
(5) Institute for Computational Modelling, Russian Academy of Sciences,
Ru-660036 Krasnoyarsk 36, Russian Federation
(6) Institute for Geophysics, Astrophysics, and Meteorology, University of Graz,
Universitätsplatz 5, A-8010 Graz, Austria
The case for a wet, warm Mars: But where is all the water and the atmosphere?

- Observations of a network of valleys in crater rich areas of the southern hemisphere suggests that Mars had once a significant hydrologic activity [e.g., Carr Nature 326, 30, 1987; Baker Nature 412, 228, 2001; Carr & Head JGR 108, E5, 5042, 2003]

- Asteroids and comets from beyond 2.5 AU provide the source of Mars’ water, which totals 6 - 27% of the Earth’s present ocean equivalent to 600 - 2700 m depth on the Martian surface or in the crustal regolith [Lunine et al. Icarus 165, 1, 2003]

- Enrichment and fractionation of heavy isotopes [e.g., Pepin Icarus 111, 289, 1994]

- Estimations of volumes of potential early Martian water reservoirs from geo-morphological analysis of possible shorelines by MGS images and MOLA data $\rightarrow \ d \approx 150 \ - \ 160 \ m$ [Carr & Head JGR 108, E5, 5042, 2003]
 - Stored in present polar caps $\rightarrow \ d \approx 20 \ - \ 30 \ m$
 - Surface ground water $\rightarrow \ d \approx 80 \ m$
 - Escaped to space $\rightarrow \ d \approx 50 \ - \ 80 \ m$

- Early atmosphere $\approx 1 - 5$ bars [e.g., Pollack, Kasting et al. Icarus 71, 203, 1987]
Thermal atmospheric loss processes

- **Thermal atmospheric loss** → neutral particles
 - Jeans escape
 → light species (H, H₂) on present solar X-ray and EUV (XUV) conditions, dependent on planetary mass, thermospheric species and resulting exospheric temperature
 → heavy atoms (O, C, N) during high solar XUV flux periods of the young Sun

- **Hydrodynamic blow-off**
 → light (H, H₂) but also heavy (O, C, N, etc.) species dependent on planetary mass, thermospheric species during high XUV periods of the young Sun
Non-Thermal atmospheric loss processes

- **Non-thermal atmospheric loss** \rightarrow ionized but also neutral particles
 - **Photo-chemical reactions**
 \rightarrow light and heavy species (H, O, N), which are released by photo-chemical reactions
 - **Ion pick up (non-magnetized \rightarrow reduced on early Mars)**
 \rightarrow light and heavy ions, which can be picked up by the solar wind plasma flow
 - **Sputtering (non-magnetized \rightarrow reduced on early Mars)**
 \rightarrow light and heavy species of the upper atmosphere can be sputtered by solar wind plasma if the planet has no or a weak magnetic field
 - **Plasma instabilities (non-magnetized \rightarrow reduced on early Mars)**
 \rightarrow all ion species at the ionopause-transition layer, dependent on the solar wind and ionospheric conditions
 - **Momentum transport (non-magnetized \rightarrow reduced on early Mars)**
 \rightarrow light and heavy ions, which have energies larger than the escape energy
Solar irradiances and particle emission as function of time

Main Targets of the “Sun in Time” Program

<table>
<thead>
<tr>
<th>Star</th>
<th>HD</th>
<th>Spectr.</th>
<th>M_v</th>
<th>T_{eff}</th>
<th>Mass</th>
<th>Dist.</th>
<th>P_{rot}</th>
<th>Age</th>
<th>Age Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 Cas</td>
<td>12230</td>
<td>G1 V</td>
<td>5.13</td>
<td>6188</td>
<td>0.96</td>
<td>1.06</td>
<td>133.0</td>
<td>1</td>
<td>Pleiades Stream</td>
</tr>
<tr>
<td>EK Dra</td>
<td>12933</td>
<td>G0 V</td>
<td>4.91</td>
<td>5818</td>
<td>1.07</td>
<td>33.9</td>
<td>2.75</td>
<td>0.10</td>
<td>Pleiades Stream</td>
</tr>
<tr>
<td>π¹ UMa</td>
<td>72905</td>
<td>G1.5 V</td>
<td>4.86</td>
<td>5940</td>
<td>0.98</td>
<td>14.3</td>
<td>4.68</td>
<td>0.3</td>
<td>UMa Stream</td>
</tr>
<tr>
<td>HN Peg</td>
<td>206880</td>
<td>G0 V</td>
<td>4.69</td>
<td>5970</td>
<td>1.04</td>
<td>18.4</td>
<td>4.96</td>
<td>0.3</td>
<td>P_{rot}-Age Rel.</td>
</tr>
<tr>
<td>ξ¹ Ori</td>
<td>39587</td>
<td>G1 V</td>
<td>4.72</td>
<td>5940</td>
<td>1.04</td>
<td>8.7</td>
<td>5.06</td>
<td>0.3</td>
<td>UMa Stream</td>
</tr>
<tr>
<td>ι¹ Cet</td>
<td>1835</td>
<td>G2 V</td>
<td>4.85</td>
<td>5780</td>
<td>0.99</td>
<td>20.4</td>
<td>7.6</td>
<td>0.65</td>
<td>Hyades Stream</td>
</tr>
<tr>
<td>ι¹ Cet</td>
<td>20630</td>
<td>G5 V</td>
<td>5.02</td>
<td>5700</td>
<td>0.96</td>
<td>9.2</td>
<td>9.2</td>
<td>0.75</td>
<td>P_{rot}-Age Rel.</td>
</tr>
<tr>
<td>β¹ Cun</td>
<td>114710</td>
<td>G0 V</td>
<td>4.51</td>
<td>5950</td>
<td>1.10</td>
<td>9.3</td>
<td>12.4</td>
<td>1.6</td>
<td>P_{rot}-Age Rel.</td>
</tr>
<tr>
<td>15 Sge</td>
<td>180406</td>
<td>G1 V</td>
<td>4.60</td>
<td>5850</td>
<td>1.01</td>
<td>17.7</td>
<td>13.5</td>
<td>1.9</td>
<td>P_{rot}-Age Rel.</td>
</tr>
<tr>
<td>Sun</td>
<td>–</td>
<td>G2 V</td>
<td>4.84</td>
<td>5777</td>
<td>1.00</td>
<td>1 AU</td>
<td>25.4</td>
<td>4.6</td>
<td>Isotopic Dating</td>
</tr>
<tr>
<td>18 Sco</td>
<td>146233</td>
<td>G2 V</td>
<td>4.79</td>
<td>5785</td>
<td>1.01</td>
<td>23.4</td>
<td>14.0</td>
<td>23</td>
<td>Isotchrones</td>
</tr>
<tr>
<td>β¹ Hvs</td>
<td>2151</td>
<td>G2 IV</td>
<td>4.84</td>
<td>5800</td>
<td>1.09</td>
<td>7.5</td>
<td>8.6</td>
<td>1.6</td>
<td>Isotchrones</td>
</tr>
<tr>
<td>16 Cyg A 186408</td>
<td>G1.5 V</td>
<td>4.32</td>
<td>5790</td>
<td>1.00</td>
<td>21.6</td>
<td>35.5</td>
<td>8.5</td>
<td>Isotchrones</td>
<td></td>
</tr>
</tbody>
</table>

- High-energy radiation observations from space
- Stellar wind observations from space (Ly-α) and radio mm wavelengths
- Extended time series (several days) to evaluate short-term variability
X-rays

FUV

EUV

UV

High-energy irradiances

High-energy irradiances
The flux density evolution scales well with power-law relationships.

The overall XUV flux (1 - 1200 Å) decreases with a slope of \(-1.2\) higher than today 2.5 Gyr ago, \(6 \times 3.5\) Gyr ago, \(100 \times\) ZAMS!

The important Ly-\(\alpha\) line (1215 Å) decreases with a slope of \(-0.72\).
This is the last ingredient of stellar activity (stars have hot coronae and lose mass at a certain rate).

The mass loss rate also seems to correlate with L_x.

New observational campaigns of very young stars are going on.

Until we have no data for the first Gyr one has to be careful.
Escape rates [s^{-1}] of various species from present Mars to 3.5 Gyr ago

Assuming a self-regulation mechanism between the loss of O and H as postulated by McElroy and Donahue [1972], we obtain a total H_2O loss over the past 3.5 Gyr of ≈ 12 m GEL (Global Equivalent Layer)

<table>
<thead>
<tr>
<th>Species</th>
<th>Present</th>
<th>2.5 Gyr</th>
<th>3.5 Gyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2O</td>
<td>9.5E+25</td>
<td>2.0E+26</td>
<td>2.5E+27</td>
</tr>
<tr>
<td>Total: O</td>
<td>6.4E+24</td>
<td>2.0E+26</td>
<td>2.5E+27</td>
</tr>
<tr>
<td>Pick up: O^+</td>
<td>3.0E+24</td>
<td>4.0E+25</td>
<td>8.3E+26</td>
</tr>
<tr>
<td>Dissociative recombination: O</td>
<td>6.0E+24</td>
<td>3.0E+25</td>
<td>8.0E+25</td>
</tr>
<tr>
<td>Sputtering: O</td>
<td>3.5E+23</td>
<td>1.3E+25</td>
<td>1.5E+27</td>
</tr>
<tr>
<td>Sputtering: CO_2</td>
<td>5.0E+22</td>
<td>2.3E+24</td>
<td>4.0E+25</td>
</tr>
<tr>
<td>Sputtering: CO</td>
<td>3.7E+22</td>
<td>2.0E+24</td>
<td>2.5E+25</td>
</tr>
</tbody>
</table>

[Terada et al. submitted to Icarus, 2005]

[Terada et al. submitted to Icarus, 2005]

Test particle models and complex hybrid simulations give about similar results for total loss rates
X-ray and EUV heating over Martian's history

- Thermospheric model solves the equations
 - of continuity,
 - hydrostatic and heat balance
 - equations of vibrational kinetics for radiating molecules

The applied model is self-consistent with respect to the neutral gas temperature and the vibrational temperatures of the minor species radiating (cooling) in the IR [e.g., Gordiets et al., JGR 87, 4504, 1982]

- Heating due to the N₂, O₂, and O photoionization by XUV-radiation (λ ≤ 1027 Å)
- Heating due to O₂, and O₃ photodissociation by solar UV-radiation, chemical heating in exothermic reactions with O and O₃
- Neutral gas heat conduction
- IR-cooling in the vibrational-rotational bands of CO₂, NO, O₃, OH, NO⁺, N¹⁴ N¹⁵, CO, in the 1.27 μm O₂ IR atmospheric band and in the 63 μm O line that strongly depends on the neutral atmosphere temperature
- Heating and cooling due to contraction and expansion of the thermosphere
- Turbulent energy dissipation and heat conduction

For dense CO₂ atmospheres the 15 μm CO₂ IR band is very important for cooling
Jeans escape parameter for H and O on Mars

Equation:

\[X(r) = \frac{GM_p m_i}{r k T_{\infty}} = \frac{v_{\text{esc}}^2}{v_0^2} \]

- **Due to expansion H reaches blow-off \(\rightarrow \) dynamic escape at temperatures around 800 - 1000 K**

*Graphs showing the escape parameter for
\(X = 1.5 \) at various temperatures.*

Hydrodynamic escape

\(X(r) \leq 3 \) \(\rightarrow \) atmospheric expansion hydrodynamic loss
Evolution of the exospheric temperature

Model simulations high variation of exosphere Temperature [e.g., Bougher et al. JGR 99, 14609, 1994]

high O loss rates

dynamic loss of H

dynamic loss of H

≈ 300 Myr

≈ 130 Myr

Viking, NGS aerobreaking ionosphere/ EUV activity relations

XUV flux

Exosphere temperature, K

CO₂ = 1%

CO₂ = 10%

CO₂ = 96%

eff = 50%

eff = 4%

16%
Loss of O due to large Jeans escape rates

Diffusion limited escape of hydrogen can be $\geq 10^{11} - 3 \times 10^{11} \text{ cm}^{-2} \text{ s}^{-1}$

$\Delta t(\text{Gyr}) = 2.4 \times 10^9 \frac{\Delta p(H_2O)[\text{bar}]}{\phi_{esc}(H)[\text{cm}^{-2} \text{s}^{-1}]} \rightarrow 50 - 100 \text{ Myr (d = 150 m)}$
Effects on the Martian atmospheric and water environment

<table>
<thead>
<tr>
<th>Hydrodynamic loss [HL]</th>
<th>Ion pick up [PU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact erosion [IE]</td>
<td>Momentum transport (viscous processes) [MT]</td>
</tr>
<tr>
<td></td>
<td>Erosion due to plasma instabilities [PI]</td>
</tr>
<tr>
<td></td>
<td>Dissociative recombination [DR]</td>
</tr>
<tr>
<td></td>
<td>Sputtering [SP]</td>
</tr>
</tbody>
</table>

How much H$_2$O-ice is stored in present subsurface ice reservoirs?

→ Mars Express MARSIS

Application of a hydrodynamic loss model to hydrogen loss and impact erosion → diffusion-limited loss of hydrogen

Coupling between research on water vapour in early Mars atmosphere