Global Partial Melt Zone in Mars: Origin for Recent Volcanism?

D. Breuer
Institute of Planetary Research, DLR, Berlin,

S. Schumacher
Institute of Planetology, University of Münster
Cooling of a One-Plate Planet

Present thermal evolution models suggest:

- Average upper mantle temperature above melting temperature in early evolution → strong early crust formation
- Present-day average mantle temperature below melting temperature
- Present-day melt due to lateral temperature variations, e.g. plumes?
‘Stable‘ Plume Volcanism?

- Thermal boundary layer (tbl) is necessary e.g. at the bottom of mantle
 - Cooling of the core ➔ rapid disappearance of tbl

- Stability of plumes possible with phase transitions close to core-mantle boundary
 - Phase transition may be not existent
 - Models with temperature-dependent viscosity do not show the stabilizing effect of plumes (Roberts and Zhong, 2004)
Alternative Model

Origin of recent volcanism a consequence of the heat transport through the upper non-convecting layer?
Thermal Conductivity

- **Mantle material**
 - Dependent on temperature and pressure
 - ~ 3 – 4 W/(mK)

- **Crustal material**
 - ‘Compact’ crust (e.g. basalt and andesite) ~ 2 W/(mK)
 - Fractured surface layer 0.01 – 0.5 W/mK
Model

- Stagnant lid parameterization
- Crust formation with redistribution of radioactive elements
- Composition, temperature- and pressure-dependent thermal conductivity

![Graph showing thermal conductivity vs depth](image)
Results I

- Mantle Temperature (K)
- Stagnant Lid Thickness (km)

- \(K = 4 \text{ W/(mK)} \) in crust and mantle
- \(K = 2 \text{ W/(mK)} \) in crust and \(K(T, P) \) in mantle
Results II

![Graph showing the relationship between time (Ma) and depth (km). The graph includes a shaded area and several lines, indicating changes over time.]
Figure 7. Degree 1-85 crustal thickness model (5 km contours), in Mercator and polar stereographic projections as in Figure 3.

Neumann et al, 2004
Expected Lateral Temperature Variations at 300 km Depths

Estimate from simple assumptions

- Steady state heat conduction
- No lateral heat flow
- Constant mantle heat flow

Crust, $k_c = 2 \text{ W/(mK)}$

Upper non-convecting mantle

Mantle heat flow
Results

![Graph showing the relationship between lateral temperature variation at 300 km and crustal thickness variation](image)

- Lateral temperature variation at 300 km (K)
- Crustal thickness variation (km)
Conclusions

- Recent volcanic activity difficult to explain with present-day plume(s)

- Low conducting crust is responsible for recent volcanic activity
 - Zone with partial melt in about 300 km depth can be the source region
 - Lateral thickness variations in the crust increase locally the melt content and may favour the rise of melt in those regions (e.g. Tharsis)