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NASA’S HISTORIC DISCOVERY OF
METHANE ON THE RED PLANET

Ski gir
dies in
icy river

shoots’
mer




The point of view of the atmospheric chemist & dynamicist

+ Can the Mars atmosphere create variations ?

* What happens if the source is localized ? episodic ?

*  What are the implications on the lifetime/source/sink of



The chemistry-as-we-know-it scenario

* Methane implemented in the LMD global climate model with coupled photochemistry
CH, mixing ratio (ppbv) Ls = 000-030  CH4 (ppmv)

CH, + hv — products

Prassure (hPo)
®
O
<

(0]
o

P .
14
Latituce

B
X
~
o
O
3
o
o=
<

CH, + O(D)

!

Pressure (h2a)

Observations

60°S 0° 60°N
Latitude

Jourdain et al., 2008
 Lifetime: 330 terrestrial years

* Source: 260 t terrestrial year?! (Earth: 582x10° t year1)



The chemistry-as-we-know-it scenario

» what if the methane source is localized ? episodic ? both ?

release: L, = 135-166° (60 sols) = most favourable case!

A. Seasonally averaged Methane (CH,) abundance [ppb]
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the chemistry-as-we-know-it scenario
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The chemistry-as-we-know-it scenario

CH, zonally averaged mixing ratio (ppbv)
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» A (much) stronger source is needed — stronger sink — shorter lifetime



Shorter lifetime ?

» |dealized tracers released from Syrtis Major
+ Episodic source (Lg ~ 150°)
A. Seasonal]y averaged Methane (CH,) abundance [ppb]

» Various lifetimes (1000 years to 100 days)

Tracer mixing ratio (ppbv)

Lifetime: 3 years
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The CSHELL/NIRSPEC scenario

Lifetime in the atmosphere: 2 terrestrial years
release: L, = 120-183° (120 sols)

A. Seasonally averaged Methane (CH,) abundance [ppb]
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Lifetime: 2 terrestrial years

B
EQ

1
30S .

I

I
60S [

SNVEQUinox-L,=333°t0 215 S S 3

©
i
=
=

o
|

30N

EQ

308

80S

Jan-Mar 2006 (MY27-28)

180 150 120 90 60 30 O 330 300 270 240 210 18
West longitude

20°S
180°W 120°W 60°wW 60°E 120°E 180°

Longltude Villanueva et al., 2009

EXP Z008 038 YEAR 4-5

90S

Source: ~80000t  (~ 150 000t if seasonal)



The PFS scenario

Lifetime in the atmosphere: 3 terrestrial years
release: Ly = 120-183° (120 sols) ]

Tracer mixing ratio (ppbv)
Lifetime: 3 terrestrial years
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* methane source : between 25-30 km altitude



A missing atmospheric loss of methane ?
Maybe!
but
1. This process must be extremely powerful (100-500 x faster than the « conventional » methane loss)
2. It must be consistent with the observed behaviour of methane on Earth

3. It must be consistent with the observed behaviour of other species on Mars:

O3 Perrier et al., 2006; Fast et al., 2008; Lefévre et al., 2008; Krasnopolsky, 2009
CO Smith et al., 2009
H,O, Clancy et al., 2004; Encrenaz et al., 2004; 2008; Lefévre et al., 2008

* CH, loss by triboelectricity in the atmosphere
* CH, reversible adsorption in the regolith
* CH, irreversible loss in the regolith



6/30/1999 06:51:59 UTC 6/30/1999 08:49:34 UTC 6/30/1999 10:47:11 UTC 6/30/1999 12:44:52 UTC
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CO,+e—-CO+0O
HO+e ->OH+H — ... > H,0,

CH, + e — products




SImU|atlon Wlth Zonally averaged Dust Opacity at 7 hPa MY26
tribolectricity
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Methane loss in the regolith

* reversible adsorption of CH, Gough et al.,in press; Meslin et al., submitted
« irreversible loss of CH, (reaction with oxidants in the regolith)
* triboelectric production of H,O, Atreya et al., 2006; 2007

* in situ production of H,O, and other oxides/superoxides Hurowitz et al., 2006; Davila et al., 2008




Latitude

methane loss in the regolith
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CH, adsorption in the regolith

« Uptake coefficient (y) of CH, measured experimentally on Martian soil analog (JSC Mars-I,
Gough et al., in press)

* ¥(T) introduced in a full subsurface-atmosphere transport module, taking into account the
thermodynamics and kinetics of the adsorption process

Figure 6B
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CH, permanent |

TiO,*H,0,

(Quinn and Zent, 1999)

Jamples in vials with N, atmosphere
eadspace was sampled,analyzed

* After initial (t=0) measurement, organ
* GC measurements taken at 24, 48, 7]
 Several controls were used to rule ou

JSC-Mars-1 + H,0,
(Levin and Straat, 1981)

0ss Iin the regolith

Raina Gough et al., University of Colorado
ESA-ASI Methane Workshop, Frascati, 2009
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Conclusions

The "conventional" atmospheric chemistry does not produce measurable
methane variations on Mars, even in the case of a current, episodic, and
localized source.

By
s

CSHELL/NIRSPEC: an atmospheric CH, lifetime of less than 200 days (seasonal
release) or ~2 Earth years (single event) is required to réproduce the
observations (work with NASA Ames GCM leads to the Same conclusion,
Malynda Chizek, 2009).

F

PFS: measurements at high latitudes require a lifetime of less than ~3 Earth
years. Longitudinal variations at high latitudes and seasonal trends at mid-to-low
latitudes cannot be reproduced.

The CH, source: quantitative agreement with the observations requires amounts
comparable to the most active hydrothermal sites on Earth.



Conclusions

Solutions ?

» fast atmospheric loss of methane by electrochemis

= is not supported by current observations of CO, F

» fast loss of methane in the regolith:

» must be extraordinarily rapid (< 24 h) to satisfy t

= is not supported by current observations of othe _ must be
highly selective ‘ 2aE s

» s not supported by on-going laboratory work



