Methane emissions from Earth's degassing: a reference for Mars

Giuseppe ETIOPE

INGV Istituto Nazionale di Geofisica e Vulcanologia, Roma

- **1. Classification of geological CH4 emissions**
- 2. Gas fluxes: emission factors and global emission
- **3. Gas origin:** global perspective, problems, some rarities....
- 4. Considerations for unravelling CH4 origin on Mars

1. Classification of geological CH4 emissions

3 types of MV gas emissions

VENTS

outburts

fires

Giant mud volcanoes

Azerbaijan

Taiwan

FLUX FROM VENTS (macroseepage)

FLUX FROM ERUPTIONS

Dahsgil mud volcano (Azerbaijan)

>13000 seeps on the continents (Clarke abd Cleverly, 1991; Fugro- Robertson database)

MACRO-SEEPS GAS-SEEPS Bubbling water, fires

Italy

MACRO-SEEPS GAS-SEEPS Bubbling pools, fires

Romania

MACRO-SEEPS GAS-SEEPS Everlasting fires

Turkey

MACRO-SEEPS GAS-SEEPS Everlasting fires

Azerbaijan

MICROSEEPAGE

Diffuse degassing from soil

Gas migration along faults

Pressurised gas from hydrocarbon reservoir

DRY SOIL IS NOT ALWAYS A CH4 SINK!

Positive fluxes of methane (> 1 mg m⁻² d⁻¹)

closed S.

HOH LOCCENE

INGV-West Systems prototype (semiconductor sensor)

Immediate, online measurements of CH4 flux from soil

Laser sensor (infrared-absorption spectroscopy)

Bubble plumes (reaching the atmosphere from seafloor < 200-300 m deep)

MARINE SEEPS

Cold seeps, mounds, pockmarks...

VOLCANIC & GEOTHERMAL METHANE

CO₂: 90-99%v CH4: 0.01-2%v

 $CO_2 + 4H_2 = CH_4 + 2H_2O$

+ thermogenic (organic matter breakdown)

Magmatic, hydrothermal CO_2 -rich vents (fumaroles, mofettes) and soil degassing

SEEPAGE AND MICROSEEPAGE widespread and detectable in correspondence with any gas-oil field (or Total Petroleum System)

Many petroleum fields discovered thanks to HC seepage

Global distribution of all geo-CH4 emission zones

Gas-oil fields: 112 countries (out of 182) >900 onshore MV and >13000 oil-gas seeps in > 80 countries Potentail global microseepage area: ~ 4-8 M km²

2. Gas fluxes: emission factors and global emission

Emission factor = specific flux

Point sources (vents):

ton/year

Area sources (with microseepage): t km⁻² y⁻¹ mg m⁻² d⁻¹

A LARGE FLUX DATABASE – Emission factors are today well known

Hundreds of flux data from USA, EUROPE, AZERBAIJAN, CHINA, TAIWAN

Gas flux from vents & ground is similar in all MV surveyedTypical EF (including microseepage around vents): $10^2 - 10^3$ t km⁻² y⁻¹Single vents or craters of small MV (1-5 m high) 10^0-10^1 t/y 10^2 t/yA whole MV (with tens or hundreds of vents) 10^2 t/y 10^3 t in a few hours

SEEPS

Individual gas seeps (natural fires, bubbling pools) **10^o to 10³** t/y.

Typically 10^{1} - 10^{2} mg m⁻² d⁻¹ (similar to wetlands), Around macro-seeps 10^{3} - 10^{5} mg m⁻²d⁻¹,

Volcanoes are not important CH₄ contributors (CH₄ concentration 0.0001 - 0.1%) **<10⁰-10¹** t/y by volcano

Geothermal manifestations are more important, up to 10^2 t/y for individual vents

GEO-CH4 EMISSION ESTIMATES

TOTAL = 42-64 Mt/y

A revised CH₄ source inventory

with Geo-CH₄ emission: 42-64 Mt/y 2nd natural CH₄ source 9% of total CH₄ source

GAS-HYDRATES MISQUOTATION and SPECULATION

Sedimentary gas seepage CH4 rich (>80 %) volcanic-geothermal exhalations CO₂ dominant (>90 %)

both have ethane (C₂H₆) and propane (C₃H₈)

 $10^2 - 10^3$ ppmv in petroleum gas (often > 1% in deep gas and oil seeps)

ppbv and ppmv levels

23 JANUARY 2009 VOL 323 SCIENCE www.sciencemag.org

Earth's Degassing: A Missing Ethane and Propane Source

Giuseppe Etiope¹* and Paolo Ciccioli²

Analysis of a robust data set of C1, C2, C3 from 238 sites coupled with published estimates of geo-CH4 emissions (9 petroleum basins, > 4000 soil-gas samples)

	Global CH ₄ emission	Median C ₂ /C ₁	Ethane emission	Median C ₃ /C ₁	Propane emission
Mud volcanoes	6-9	0.0007	0.008-0.012	0.00008	0.001-0.002
Onshore seeps	3-4	0.018	0.10-0.14	0.009	0.074-0.1
Microseepage	10-25	0.068	1.28-3.21	0.031	0.85-2.13
Marine seeps	20	0.012	0.45	0.0017	0.09
Geothermal	2.5-6.3	0.013	0.06-0.15	0.0013	0.009-0.022
Volcanic	<1	0.022	< 0.041	0.010	<0.027
Total geologic	42 - 64		~2-4		1 - 2.4
Biogenic			0.80		1.63
Oceans			0.78		1.06
Anthropogenic			5.70		6.51
Forest-savanna burning			2.29		0.41
Total POET			9.57		9.61

23 JANUARY 2009 VOL 323 SCIENCE www.sciencemag.org

Earth's Degassing: A Missing Ethane and Propane Source

Giuseppe Etiope¹* and Paolo Ciccioli²

Earth's degassing accounts for > 17% and 10% of total C2 and C3 emissions

3. Gas origin

Global analysis of onshore seeping $\delta^{13}C_{1,\delta}D$, C1/C2+C3

Contents lists available at ScienceDirect

Marine and Petroleum Geology

Partice and Percelam Cooling

Terrestrial methane seeps and mud volcanoes: A global perspective of gas origin

Giuseppe Etiope ^{a,*}, Akper Feyzullayev^b, Calin L. Baciu^c

, Schoell and Bernard plots (genetic zonation)

ASSESSING GAS ORIGIN

Recognition of Post-Genetic Processes (PGP) PGP = modification of genetic features

GENETIC ZONATION PLOTS

SEVEN PGP AFFECTING GAS HC

- 1) aerobic microbial oxidation of methane
- 2) anaerobic microbial oxidation of methane
- 3) abiogenic oxidation
- 4) isotopic fractionation by diffusion
- 5) molecular fractionation by advection

- 7) anaerobic biodegradation of petroleum and secondary methanogenesis

1. Aerobic microbial oxidation (Coleman et al. 1981; Schoell 1983; Whiticar, 1999).

3. Abiogenic oxidation

- thermochemical sulphate reduction (TSR)

- oxidation by ferric (Fe3+)-bearing minerals (hematite, magnetite; *Pan et al., 2006; Seewald, 2003*). at relatively high temperatures (80°C - 400°C);

- in very deep reservoirs (and in high heat flow regions)
- TSR produces high H₂S concentrations (>1 %) and increased δ^{13} C values of C₁–C₅ hydrocarbons.
- not typical of MV systems (low T fluids, H2S generally absent)

4. Isotopic fractionation by diffusion (Fick's law gas motion)

well known during primary migration (from source rock to res.) and secondary migration (between reservoirs). - depletion of ¹³C in diffusing CH₄

- ¹³C enrichment in residual CH₄

not important in seeps (advection is dominant) (Deville et al., 2003; Etiope et al., 2007; Etiope et al., 2009)

5. Molecular fractionation by advection (Darcy's law gas motion)

Distillation of light HC by adsorption and solubility properties

characteristic of many MV systems not observed in high flow "dry" seeps sometimes observed in low flow seeps *(Etiope et al., 2009)*

6. Gas mixing (thermogenic + microbial)

Observed in 20% of onshore MV (*Etiope et al., 2009*). in reservoir or during the ascent of gas Its recognition is not immediate: $\delta^{13}C_1$ alone can be misleading

GENETIC ZONATION PLOTS Effects of post-genetic processes

-60

-40

-20

10⁰

-100

-80

GENETIC ZONATION PLOTS CAN BE MISLEADING WHEN APPLIED TO SEEPS

And there is an unusual seep in Turkey.....CHIMAERA

CH4: 87% $\delta^{13}C_1 = -8$ to -12 ‰ H₂: 11%

New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas Geofluids (2008) 8, 263–273

H. HOSGORMEZ¹, G. ETIOPE² AND M. N. YALÇIN¹

Total CH4 flux >>50 ton/year

~ 50% of gas is ABIOGENIC (low T serpentinization)

Abiogenic CH4 flux >>25 ton/year

THE BIGGEST TERRESTRIAL (onshore) ABIOGENIC GAS SEEP IN THE WORLD!

Other abiogenic (serpentinization) gas seeps

Mid-Ocean Ridges: but they are high T serpentinization (hydrothermal)

Charlou et al (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field. Chem. Geol., 191, 345.

Proskurowski et al (2008) Abiogenic hydrocarbon production at Lost City Hydrothermal Field. Science, 319

Onshore, low T serpentinization seeps are only in the Philippines and Oman, but they are quite weak (no flux data)

Abrajano et al (1988) *Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin?* Chem. Geol., 71, 211.

Sano et al (1993) Origin of hydrogen-nitrogen gas seeps, Oman. Appl.Geoch., 8, 1.

And low T serpentinization occurs in New Caledonia and Bosnia (Barnes et al., 1978) – no news about seeps

4. Unravelling CH4 origin on Mars (FLUXES)

 CH4 from seeps (point sources): 10^o to 10³ t/y Fluxes of terrestrial seeps are a reference for eventual Mars analogues.

Potential (not actual) amount of gas (orders of magnitude) from Martian seeps can be inferred by their size (area), applying terrestrial emission factors.

 CH4 can also be released by diffuse exhalation (microseepage) from Martian soil (area source), even if macro-seeps are lacking; typical fluxes from soil in petroleum basins: 1-100 mg m⁻²d⁻¹

3.

N.Summer 2003 CH₄ plume can be produced by \geq 52 t/day (*Mumma et al 2009*). On the Earth, \geq 52 t/day are provided by gas seepage zones of the order of 10¹-10³ km² (or microseepage area 500 to 5000 km² wide).

If a global Martian CH4 source of ~100-300 t/y is required to maintain 10 ppb in the atmosphere, then only a few (or just one) terrestrial-type seeps may be requested.

4. Unravelling CH4 origin on Mars (GENETIC FEATURES)

- Most of gas seeping on the Earth's surface (thousands of seeps) is thermogenic (80%). Microbial only 4%

- Only a few seeps are abiogenic (low T serpentiniz.): but a large abiotic gas emission (>25 t/y) has been discovered in Turkey

Useful parameters:

δ13C1 and δD1may helpC2H6 (ethane),C3H8 (propane)Concentration (indication of serpentinization)Can they be measured byCan they be measured by</t

BUT, CAUTION!:

C1/C2 cannot help to distinguish between biotic and serpentinization gas (similar ratios, and possibility of molecular fractionation)

 $\delta^{13}C_{1 \text{ and }} \delta D_1 \text{ may not be decisive: possible occurrence of isotopic fractionations (in subsoil, soil, atmosphere) must be assessed$

4. Unravelling CH4 origin on Mars (GENETIC FEATURES)

Bad news?

Sorry, but it is likely that analysing CH4 isotopes and other trace gas in the atmosphere will not be decisive to understand CH4 origin (probably you'll get more questions than answers)

Gas should be analysed in the Martian soil or (better) subsoil, (before eventual migration- or atmospheric-induced fractionations)

The best:

- fluid sampling/analysis directly in a mud volcano (if fluids exist there)
- drilling in the Martian subsoil.

Possible in future missions?

CO₂ and CH₄

geo-sources vs man-made vs natural

