Zero-Valent Iron on Mars:
An Alternative Energy Source for Methanogens

Brendon K. Chastain
University of Arkansas
Dept. of Biological Sciences
Methanogens – Good Model for Possible Subsurface Life on Mars

• Can grow in temperatures below 0 C (Reid et al., 2006)

• Can tolerate exposure to extremely low pressures (Altheide and Kral, 2008)

• Phylogenetically primitive

*Mars in a laboratory!
Fe0 on Mars

- Several large iron meteorites composed primarily of Fe0 found on Mars’ surface. *(Schroder et al., 2008)*

- Stony-irons containing substantial Fe0 also found in what might be a strewn field. *(Schroder et al., 2008)*

Courtesy: NASA/CORNELL
Micrometeorite Delivery

• Just like Earth, Mars is bombarded with meteoritic debris, much of it Fe\(^0\).
 – Substantially thinner atmosphere increases the amount reaching the surface

• Flynn and McKay (1990) estimate as much as 29% of Martian soil from meteorites.
 – Up to 59,000 tons per year delivered to the surface
Shock-reduction from Impacts

• Impacts can lead to shock-reduction of iron-bearing minerals resulting in nanophase Fe0.

• Numerous studies confirm Fe0 in SNC meteorites. (e.g. Kurihara et al., 2009)

• This has been mimicked in the laboratory using JSC Mars-1 regolith simulant. (Moroz et al., 2009)

1) TEM image of NWA 2737 olivine. Small, dark (electron-dense) spherules are consistent with α-iron kamacite [after Treiman et al., 2007] (Pieters et al., 2008)
Fe0 Source Summary

- Large meteorites deliver exogenous Fe0
- Micrometeorites deliver exogenous Fe0
- Large impactors generate and spread nanophase Fe0 due to shock-reduction of iron-bearing minerals
- May lead to substantial buildup of Fe0 over time
Fe⁰ Relationship to Methanogens

- Protons in solution can react with Fe⁰ to produce H₂, but the reaction is not thermodynamically favorable.
 \[4\text{Fe}⁰ + 8\text{H}^+ \rightarrow 4\text{Fe}^{2+} + 4\text{H}_2 \]
 \[\Delta G°^r = +3.5 \text{ kJ} \]
- However, a sink for H₂ can drive the reaction.
- Daniels *et al.* (1987) show that methanogens in nutritive medium can utilize the H₂.

Daniels *et al.* (1987)
This Study:

• Fe⁰/any H⁺ in solution (energy)
• Bicarbonate buffer/CO₂ (carbon/water)
• Montmorillonite clay (micronutrients)

• Does methanogenic metabolism take place in these Mars-relevant conditions?

*Why montmorillonite?
Montmorillonite clay can supply the micronutrient requirements of methanogens.
Results: Fe\(^0\) vs. no H\(_2\)
Obvious oxidation to Fe^{3+}

*Is the darker color of the montmorillonite an indication of Fe(OH)_2?
Comparison to Previous Work

- Initial study before transfer
- Initial study after transfer
- Fe⁰-included

Methane Concentration (% vol.)

Time (days)
Concluding Remarks

• Fe^0 is available on Mars
• CO_2 is available on Mars
• Montmorillonite-like clays are available on Mars
• Given the right environmental conditions, these three materials can support methanogenic metabolism
• The temperature was not exactly Mars-relevant, BUT…