

Tutorial II (Geological History) Volcanism and Tectonics

Ernst Hauber

Workshop Mars III, Les Houches; 28 March- 2 April 2010

Volcanism on Mars: Tutorial Structure

- Distribution
- · Morphology
- Eruption processes / style
 influence of environmental conditions
- Composition
- Outgassing
 - -volumes
- Ages
 - -heat sources

Review papers:

- Greeley & Spudis (1981)
- Wilson & Head (1994)

- Mouginis-Mark et al. (1992)
- Zimbelman (2000)

Mars: Simplified geologic map

from Nimmo & Tanaka, Ann. Rev. Earth Planet. Sci. (2006)

Ancient highland paterae

- Very old ages (3.8 3.5 Ga)
- Heavily dissected flanks \rightarrow easily erodible material
- Ash or pyroclastic material (explosive eruptions)

Large shield volcanoes

Stralsund

Greifswald

Large diameters (up to 600 km)

- Gentle flank slopes (few degrees)
- Long-lasting activity (caldera collapse: ~100 to 400 Ma)

Effusive volcanism

Lava flow morphology \rightarrow basaltic rheology

Giant Martian shield volcanoes

Why are they so large?

- no plate tectonics?
- strong lithosphere?
- long-lived hot-spots?

Olympus Mons vs. Hawaii

But... ...not everything is bigger on Mars!

Example of a »small« low shield

Top: Skjaldbreidur (Iceland) Bottom: Trolladyngja (Iceland)

2 km

2 km

Background

- Plains volcanism defined by Greeley (1977, 1982)
- Low shields on Mars compared to plains volcanism (e.g., Plescia, 1981)
- Mostly Viking-based studies

A comparison of low shields on Mars and Earth

Skjaldbreiður (Iceland)

This is significantly steeper than the Martian low shields!

Calderas and pit craters

Size and morphology are very similar to terrestrial examples

More complex basaltic volcanoes

Mars (Tharsis, east of Jovis Tholus)

Earth (Erta Ale, Afar Region)

Vent structures

Inflation features (tumuli)

HiRISE image (25 cm/pixel)

Fissure eruptions

a

0

Flow fields at volcanic rifts

O

D

Tempe Terra 🔷 💀

.

00

0

0

.0

0

0 0

5 km

0

Syria Planum

<u>10 km</u>

King's Bowl (Snake River Plains)

С

N

500 m

Spatter Cones (?)

Earth (Iceland)

Mars

Candidate Cinder Cones

large W_{cr}/W_{co} ratios

Low shields & plains volcanism

- are found in clusters
- throughout Tharsis
- have different ages
- do not correlate with major physiographic features
- but are locally controlled by tectonic trends

from Hauber et al., J. Volcanol. Geotherm. Res. (2009)

Säulenbasalte («columnar jointing»)

HiRISE (25 cm/pixel!)

see Milazzo et al., Geology (2009)

Basaltsäulen ("columnar jointing")

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Possible pseudocraters (?) on top of a rough-textured lava plain

northwestern Amazonis Planitia near 24.8°N, 171.3°W

Pseudocraters near Lake Myvatn (Iceland)

Environmental control on volcanic eruptions

from Wilson & Head, Rev. Geophys. (1994)

Deutsches Zentrum für Luft- und Raumfahrt ev Institut für Weltraumsensorik und Planetenerkundung

Hawaiian Eruptions

Parameter

Sinuous rilles Cone diameter Cone height Central crater diameter Grain sizes compared to Earth not expected 2 x larger 4 x lower 5 x larger 10 x finer

Lava fountain on Kilauea, Hawaii

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Weltraumsensorik und Planetenerkundung

Lava flow on Etna, Sicily

Lava flows

Controlling factors which are different on Mars and Earth: Gravity, Atmospheric pressure, crustal density profile, dike width

Parameter Heat loss by convection Surface temperature Cooled skin thickness Effusion rates Flow lengths

compared to Earth 100 x less efficient higher (~40°C) almost identical 5 x higher 6 x longer

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Weltraumsensorik und Planetenerkundung

Mauna Loa, Hawaii

Shield Volcanoes

- thousands of lava flows
- often complex caldera complexes
- often marked by rift zones
- extreme length of lava flows (several hundred km)
- extremely large diameters (up to 600 km)
- extremely high (up to 25 km above surroundings)
- extremely voluminous (stable source regions over hundreds of millions of years (or even billions of years)

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Weltraumsensorik und Planetenerkundung

Cinder cone on Mauna Kea, Hawaii

Cinder Cones

Parameter Diameter Height Cone Ø / crater Ø Grain sizes compared to Earth
2 x larger
4 x lower
smaller
> 10 x smaller

--> less easily recognizable --> more readily covered by subsequent flows --> more susceptible to erosion

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Weltraumsensorik und Planetenerkundung

Plinian Eruptions

Parameter Eruption velocities Density of erupted gas Size of largest clasts which are transported Eruption cloud height Cloud shape Grain size of deposits

Basaltic plinian eruptions *compared to Earth* 1.5 x higher 300 x lower

150 x smaller 5 x higher similar 100 x smaller (<1cm) expected to be common (rare on Earth)

Explosion on Mt. Spurr, Alaska

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Weltraumsensorik und Planetenerkundung

Pyroclastic Flows

Parameter

Pyroclastic flow formation Eruption speeds Height of lava fountain feeding pyroclastic flows Travel distance compared to Earth
more likely
1.5 x higher
>2 x higher
3 x greater (several
hundred km)

Pyroclastic flow at Mt. St. Helens, USA

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für Weltraumsensorik und Planetenerkundung

Eruption on Stromboli, Italy

Strombolian Eruptions

Parameter Nucleation depth Bubble size, pressure Velocity range (large particles) Diameter of spatter cones Height of spatter cones

Fine tephra

compared to Earth deeper greater identical larger lower wider dispersed

Home Plate (Gusev)

Evidence for explosive volcanism

Squyres et al., Science (2008)

Surface Composition

from McSween et al., Science (2009)

The "andesite debate" (type 2): • andesite • weathered

basalt?

from Wyatt and McSween, Nature (2002)

levées as morphological constraints for rheology models (yield strength) (Hulme, 1974)

Rheology: Methods

- "standard" techniques used for a long time in planetary science (poineered by, e.g., Hulme, 1974; Moore et al. 1987)
- based on the morphometry of lava flows
- > assumptions as in other studies:
 - density (2500 kg m⁻³; 2800 kg m⁻³)
 - thermal diffusivity (3 × 10⁻⁷ m² s⁻¹)
 - Graetz number (300)

Yield strength (Pa) $\tau = h \cdot \rho \cdot g \cdot \sin \alpha$ $\tau = \rho \cdot g \cdot \frac{h^2}{2}$ Plastic viscosity (Pa.s) $\eta = \frac{\rho \cdot h^4 \cdot g}{Q}$ $\eta = \frac{\rho \cdot g \cdot h^3 \cdot w \cdot \sin \alpha}{n \cdot Q}$ Effusion rates (m^3/s) $Q = Gz \cdot \kappa \cdot x \cdot \frac{h^2}{2}$

Rheology: Lava Flow Morphometry

Step 1: Mapping of lava flow

Low shield with elongated vent embayed by younger lava flows

Results: Rheology (I)

- Yield strength:
- ~2 ×10² Pa
- Effusion rate:

 $500 - 2000 \text{ m}^3 \text{ s}^{-1}$

• Viscosity:

~10³ – 10⁴ Pa s

													4-
Name	Flow Lenght	Area	Flow Width	Flow Height	Slope	Yield strength	Yield strength	Ave. Yield	Effusion	Viscosity 1	Viscosity 2	Ave. Viscosity	
	(m)	(KM÷)	(m)	(m)	(")	a (Pa)	D (Pa)	Strength (Pa	Rate (m ^s /s)	(Pa.s)	(Pa.s)	(Pa.s)	L
a1	52194	196,03	3098	5,96	0,20	1,98E+02	1,07E+02	1,52E+02	2,44E+03	4,82E+03	2,23E+03	3,52E+03	
a2	24645	107,54	4442	7,36	0,17	2,01E+02	1,14E+02	1,57E+02	1,34E+03	2,04E+04	9,03E+03	1,47E+04	
b	24593	27,97	931	5,18	0,18	1,49E+02	2,69E+02	2,09E+02	3,98E+02	1,69E+04	3,11E+03	9,99E+03	L
с	18332	24,10	1211	6,09	0,20	1,93E+02	2,86E+02	2,39E+02	3,28E+02	3,91E+04	8,83E+03	2,40E+04	L
d1	22311	-	1125	4,77	0,16	1,27E+02	1,88E+02	1,58E+02	4,74E+02	1,02E+04	2,28E+03	6,24E+03	L
d2	18814	-	1142	5,60	0,20	1,81E+02	2,56E+02	2,19E+02	3,45E+02	2,65E+04	6,26E+03	1,64E+04	L
е	18598	20,36	1019	3,96	0,22	1,42E+02	1,43E+02	1,43E+02	4,31E+02	5,32E+03	1,75E+03	3,54E+03	
f	16029	21,38	1139	3,54	0,23	1,34E+02	1,03E+02	1,18E+02	4,64E+02	3,15E+03	1,37E+03	2,26E+03	L
For c	lensity 2500 k	g/m ³		-									Г
	·····, -····	J											
													Г
Name	Flow Lenght	Area	Flow Width	Flow Height	Slope	Yield strength	Yield strength	Ave. Yield	Effusion	Viscosity 1	Viscosity 2	Ave. Viscosity	L
	(m)	(km²)	(m)	(m)	(%)	a (Pa)	b (Pa)	Strength (Pa	Rate (m ³ /s)	(Pa·s)	(Pa•s)	(Pa•s)	L
a1	52194	196,03	3098	5,96	0,20	2,21E+02	1,20E+02	1,71E+02	2,44E+03	5,39E+03	2,50E+03	3,94E+03	ſ
a2	24645	107,54	4442	7,36	0,17	2,25E+02	1,27E+02	1,76E+02	1,34E+03	2,29E+04	1,01E+04	1,65E+04	L
b	24593	27,97	931	5,18	0,18	1,66E+02	3,01E+02	2,34E+02	3,98E+02	1,89E+04	3,48E+03	1,12E+04	L
с	18332	24,10	1211	6,09	0,20	2,17E+02	3,20E+02	2,68E+02	3,28E+02	4,38E+04	9,89E+03	2,68E+04	
d1	22311	-	1125	4,77	0,16	1,42E+02	2,11E+02	1,77E+02	4,74E+02	1,14E+04	2,56E+03	6,98E+03	
d2	18814	-	1142	5,60	0,20	2,03E+02	2,87E+02	2,45E+02	3,45E+02	2,97E+04	7,02E+03	1,84E+04	L
е	18598	20,36	1019	3,96	0,22	1,59E+02	1,61E+02	1,60E+02	4,31E+02	5,96E+03	1,96E+03	3,96E+03	
f	16029	21,38	1139	3,54	0,23	1,50E+02	1,15E+02	1,32E+02	4,64E+02	3,53E+03	1,54E+03	2,53E+03	
For c	lensity 2800 k	n/m ³				·					-		Г

Results: Rheology (II)

Basalts!

Name	Body	Yield strength (Pa)	Effusion Rate (m ³ /s)	Viscosity (Pa.s)	Source	Note
Makaopuhi, Hawaii	Earth	1.0E+02	-	-	Shaw et al. (1968)	
Mauna Loa, Hawaii	Earth	3.5E+02 - 7.2E+03	4.17E+02 - 5.56E+02	1.4E+02 - 5.6E+06	Moore (1987)	
Mare Imbrium	Moon	2.0E+02	-	-	Booth and Self (1973)	
Mairan Domes	Moon	5.3E+04 - 13.1E+04	48.0 - 51.5	1.3 – 11.5E+08	Wilson and Head (2003)	
Artemis Festoon Lobe 1	Venus	4.12E+04	1.02E+04	7.12E+06	McColley and Head (2004)	
Atalanta Festoon	Venus	1.22E+05	9.52E+02	2.34E+09	McColley and Head (2004)	
Arsia Mons	Mars	0.39E+03 - 3.1E+03	5.6E+03 - 4.3E+04	9.7E+05	Warner and Gregg (2003)	
Olympus Mons	Mars	8.8E+03 - 4.5E+04	-	2.3E+05-6.9E+06	Hulme (1976)	
Flows near Ascraeus Mons	Mars	2.0E+02 – 1.3E+05	23 – 4.04E+02	1.8E+04 - 4.2E+07	Hiesinger (2007)	density 2500 kg/m³
Large flows at Central Elysium Planitia	Mars	1.0E+02 - 5.0E+05	-	2.5E+05	Vaucher (2009)	density 2800 kg/m³
Small flows at Central Elysium Planitia	Mars	<2.0E+02	-	>1.0E+03	Vaucher (2009)	density 2800 kg/m³
Flows east from Jovis Tholus	Mars	1.00E+02	5.00E+03	1.00E+02	Wilson (2009)	density 2500 kg/m³
a ₁	Mars	1.52E+02	2.44E+03	3.52E+03	-	density 2500 kg/m ³
a ₁	Mars	1.71E+02	2.44E+03	3.94E+03	-	density 2800 kg/m³
e	Mars	1.43E+02	4.31E+02	3.54E+03	-	density 2500 kg/m ³
е	Mars	1.60E+02	4.31E+02	3.96E+03	-	density 2800 kg/m3

Hawaii, MORB $10^2 - 10^3$ Pa sGriffiths (2000)Subduction zones: Andesite, Dacite $10^5 - 10^8$ Pa sGriffiths (2000)

from Filiberto and Treiman, Geology (2009)

Outgassing

- Mapping of exposed volcanic materials to determine their areal extent (conservative approach)
- Age assignment using impact crater distribution (Tanaka, 1986)
- Thickness estimation by examining partly buried impact craters or buried craters for which imprints of the rim are visible for lava plains (method of De Hon, 1974)
- Volumes estimates from areal extent and thicknesses
- assumed intrusive-to-extrusive ratio as on Earth (5:1 to 12:1; Crisp, 1984)
 → average ratio of 8.5:1

 \checkmark Total area covered by volcanic units: 66.2 x 10⁶ km² or 46 % of the surface

✓ <u>Average thickness</u> of volcanic plains: 170 m in LN to 320 m in MA

 \checkmark Total magma volume: 654 x 10⁶ km³ or 0.17 km³/yr

✓ On Earth: 26 to 34 km³/yr

from Greeley and Schneid, Science (1991)

Flooded craters as indicators of lava thickness

HRSC image h6396_0000

Flooded craters as indicators of lava thickness

lava thickness < crater rim height (De Hon, 1974)

from Platz et al. (in preparation)

from Platz et al. (in preparation)

Reliable thickness estimates

plane fit through perimeter of mapped unit: wrong estimate

plane adjusted using craters: improved estimate

from Platz et al., Earth Planet. Sci. Lett. (in press)

from Platz et al. (in preparation)

Figure 2: Distribution of thickness estimates in the Elysium volcanic region.

from Platz et al. (in preparation)

craters < D1 destroyed by resurfacing of flow unit 1 by flow unit 2

Thickness estimation by analysis of crater size frequency distribution

ARTICLE IN PRESS

EPSL-10303; No of Pages 8

Earth and Planetary Science Letters xxx (2010) xxx-xxx

- Confident thickness estimates for planetary surface deposits from concealed crater populations
- ³ T. Platz ^{*}, G.G. Michael, G. Neukum

Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, Building D, 12249 Berlin, Germany

ARTICLE INFO

ABSTRACT

7 Article history:

- 8 Received 2 December 2009
- 9 Received in revised form 1 March 2010
- 10 Accepted 5 March 2010
- 11 Available online xxxx

12

4 5

6

An improved technique is presented to determine more accurately deposit thicknesses of any surface units 2 using crater size-frequency distributions (CSFDs). This new approach enables thickness estimates of deposits 26 that completely cover their underlying unit, i.e., where no flooded craters are observed. Here, the crater 27 populations of the unit of interest and its underlying unit (or a representative surface area) are measured and 28 their cratering model ages determined. The CSFD of the younger unit is then treated as if it had the same age as 29 the older unit and the supected cumulative numbers of craters for each hip size are calculated. The crater 20

Ages of Martian volcanism

~150 million years old Caldera of Olympus Mons

Tharsis: An old construct

(but how old exactly...?)

Old valley networks formed after Tharsis

Chronology of Martian volcanism

48

S.C. Werner / Icarus 201 (2009) 44-68

from Werner, Icarus (2009)

Methods (I) Mapping of volcanic units

- ➤ craters with diameters of
 ≥ 50 m
 (Ø 10 pixels)
- ➢ sometimes only ≥ 100 m (Syria Planum: 250 m)

Methods (II) Crater size-frequency distribution

CraterTools and CraterStats developed @FU Berlin

Example: SE of Olympus Mons

Example : Ceraunius Fossae

Mapping Area 2: South of Ascraeus Mons P18_008235_Unit2

more examples...

Low shield ages

Results

- 60 volcanoes
 and lava flows
 dated
- Most shields have ages of 50
 – 120 Ma
- Tempe Terra shields are significantly older (~400 – 1000 Ma)
- Syria Planum
 shields are the
 oldest (>1.5 Ga)

Low shield ages by region

Long-lived plumes on Mars?

Tharsis? Elysium?

e.g., Harder & Christensen, Nature (1996)

Melt generation under a thickened crust?

see the model by Schumacher and Breuer, Geophys. Res. Lett. (2007)

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Tharsis

Focus of Martian volcanism and tectonism

from Hauber et al., J. Volcanol. Geotherm. Res. (in press)

Tectonics on Mars: Tutorial structure

- Dichotomy
- Tectonic regime
- Morphological elements
- Tectonic history
- Tharsis

but no geophysics

Review papers: Banerdt et al. (1992) Golombek and Phillips (2010) Schultz et al., JSG (2010, in press)

Global (crustal) dichotomy

from Watters et al., Ann. Rev. Earth Planet. Sci. (2007)

Crustal dichotomy

- Planet-wide magma ocean
 - fractional crystallization
 - buoyant anorthositic crust
 - complementary mafic cumulate mantle
 - compositionally stratified
 - gravitationally unstable
 - overturn: dense, iron-rich and relatively cool cumulates into the Martian interior
 - analogy to the Moon (Hess and Parmentier, *Earth Planet. Sci. Lett.*, 1995).
- Degree-1 mantle convection
 - Zhong and Zuber, *Earth Planet. Sci. Lett.* (2001)

Impact formation of crustal dichotomy?

Problem:

"[...] but the heat imparted to young crust by large impacts would tend to erase topographic relief by magmatism and crustal flow."

(Solomon et al., *Science*, 2005)

However, this problem can be modeled away:

- low impact velocities
- oblique impacts

(Marinova et al., *Nature*, 2008)

from Andrews-Hanna et al., *Nature* (2008)

Thermal evolution of planets

Later stage (cooling)

• from Solomon (1975)

Tectonic regime: One plate planets

Plate tectonics on Mars?

No unambiguous morphological evidence

Very early phase of plate tectonics possible from geophysical modeling (\rightarrow would explain core dynamo)

• from Solomon (1975)

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Morphological elements (I) Simple Grabens

Apollo AS10-31-4645

Apollo AS8-13-2225

1000 m

20 km

Grabens on Earth and Mars

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Simple Grabens: Previous Models

faulting at bimaterial interface (e.g., brittle over quasiplastic rheology)

faulted upper layer separated by sills or detachment zones from undeformed substrate

graben wedge falling into spaceaccomodation tensile crack in substrate

graben faults nucleated by dike dilation at depth

from: Schultz et al., in: The Geology of Mars, Cambridge Univ. Press (2007)

The new "hourglass" model of planetary simple grabens

from: Schultz et al., in: The Geology of Mars, Cambridge Univ. Press (2007)

Morphological elements (II) 3D-views of Martian rifts

Hauber et al., Earth Planet. Sci. Lett. (in press)

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Comparison of physical parameters

	Mars	Venus	Earth
Extension [km]	<10	~20	~5-40
Elastic Thickness [km]	10-20	10-30	3-38
Heat Flow [mW m ⁻²]	28-66	18-25	~50-100

Similarities

- dimensions
- structural geology
- rift-related volcanism
- lithospheric properties

Differences

- global distribution
- geodynamic setting
- relation to hot spots
- absolute ages

Martian Rifts

- Dimensions and structural architecture similar to terrestrial continental rifts
- Moderate extension (few km)
- Ages: ~4 to 3.5 Ga
- Thin elastic lithosphere, high heat flux
- Located at periphery of Tharsis
- No obvious radial orientation to Tharsis

Hauber et al., Earth Planet. Sci. Lett. (in press) E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Morphological elements (III) Contractional faults

> Wrinkle ridges > Lobate scarps > Fold-and-thrust belt.

Wrinkle ridges

Wrinkle ridges are a wide-spread surface feature on terrestrial planets: Mercury, Moon, Mars, Venus (and Earth!)

Fig. 15 Wrinkle ridges on the plains of Mercury and similar features on the Moon and Mars. *Left*, wrinkle ridges in the plains of Mercury. View is \sim 385 km in width (Mariner 10 image 0000167). *Middle*, the southern part of lunar Mare Serenitatis showing the development of wrinkle ridges in the mare basalts. View is \sim 70 km in width (Apollo image). *Right*, wrinkle ridges in Lunae Planum on the eastern part of the Tharsis rise (MOLA digital topographic image). Note the similarities in the ridges in terms of general trends, separation, convergence, cross-cutting, and circularity around apparently buried craters

• from Head et al., Space Sci. Rev. (2007)

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

• from Mueller & Golombek, Ann. Rev. Earth Planet. Sci. (2004)

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Structural models proposed for planetary wrinkle ridges

- a) Buckle folds with nucleations of thrust faults
- (Watters, 1988)
- b) Simple thrust fault
- c) Conjugate thrust fault
- (Allemand & Thomas, 1992; Mangold et al., 1998)
- d) Fault-bend fold
- (Suppe, 1983; Suppe & Connors, 1992)
- e) Fault-propagation fold
 - (Mercier et al., 1997)

from Schultz, *J. Geophys. Res.* (2000)

Lobate Scarps: A case study

from Grott et al., Icarus (2007)

Lobate Scarps: Topography

from Grott et al., Icarus (2007)

Lobate Scarps: Modeling

- scarp emplacement between 4.0 and 3.7 Gyr
- seismogenic layer thickness at the time of faulting: 27–35 km and 21–28 km
- paleo-geothermal gradients of 12–18 and 15–23 K km⁻¹
- heat flows of 24–36 and 30–46 mW m⁻²

from Grott et al., Icarus (2007)

Paleotectonic map (western hemisphere)

Legend

from Anderson et al., J. Geophys. Res. (2001)

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Stage	Ν	Center Name	$V_c^{\ b}$	N _r ^v ,%	P ₉₅	B _c	$(N^B)^c$	N _i ^B ,%	$E_k(N^B)^d$		$(N_r^B)^e$	$E_k(N)^d$	
									3σ	7.4σ		3σ	7.4 0
Stage 1 Primary Secondary	8972	Claritas Tempe SW	27 [°] S, 106 [°] W 33 [°] N, 81 [°] W	815 (9.1%) 488 (5.4%) 410 (4.7%)	125	14°S, 106°W	40,230,226	3,620,720 (9.0%)	1893	4669	2691	266	656
Stage 2 Primary Secondary	1577	Valles Warrego	16°S, 77°W 35°S, 96°W	207 (13.1%) 168 (10.7%)	27	12 [°] S, 78 [°] W 42 [°] S, 89 [°] W,	1,242,160	158,997 (12.8%) > 74,530 (> 6%)	333	821	564 > 386	47	116
Stage 3 Primary Secondary	4496	Syria NW Tempe SW Ulysses Pavonis Syria S	4°S, 107°W 30°N, 80°W 10°N, 124°W 6°N, 114°W 19°S, 104°W	379 (8.4%) 298 (6.6%) 271 (6.0%) 299 (6.7%) 328 (7.3%)	66	3°S, 108°W 30°N, 80°W	10,102,108	1,202,151 (11.9%) 303,063 (3%)	949	2341	1551 779	134	331
Wrinkle ridges	4554	Lunae E Svria NW	18°N, 48°W 4°S 108°W	394 (8.7%) 373 (8.2%)	67	~13 [°] S, 48 [°] W 7 [°] S_107 [°] W	10,349,700	620,982 (6%) 1 511 056 (14 6%)	961	2370	1114	135	332
Stage 3 + wr ^f	9050	Syria NW	4'S, 100 W	567 (6.2%)	133	8°S 109°W	40,946,725	3 111 951 (7 6%)	1909	4710	2714	268	662
Stage 4 Primary	3666	Alba	37°N. 107°W	358 (9.8%)	55	42°N, 104°W	6,716,066	691.755 (10.3%)	774	1909	1176	109	269
Stage 5 Primary Secondary	1187	Ascraeus S Olympus	8°N, 106°W	207 (17.5%)	22	7°N, 106°W 25°N, 135°W	703,613	96,395 (13.7%) 49,253 (7%)	250	617	428 231	35	86
All Features Primary Secondary	24452	Syria NW Claritas Alba Tempe	4 [°] S, 107 [°] W 20 [°] S, 104 [°] W 28 [°] N, 108 [°] W 30 [°] N, 82 [°] W	1464 (6.0%) 1446 (6.0%) 1142 (4.8%) 1071 (4.4%)	359	3°S, 109 [°] W	298,894,115	17,936,276 (6.7%)	5159	12726	5989	725	1788
All Extensional Features Primary Secondary	19896	Claritas Syria NW Tempe Alba Ascraeus N	20 [°] S, 104 [°] W 3 [°] S, 107 [°] W 30 [°] N, 82 [°] W 34 [°] N, 107 [°] W 14 [°] N, 109 [°] W	1339 (6.7%) 1292 (6.5%) 935 (4.7%) 1026 (5.2%) 1164 (5.9%)	278	4°S, 109°W	197,916,660	16,229,166 (8.2%)	4198	10355	5557	590	1455

Table 3. Primary and Secondary Centers Identified From the Vector and Beta Analytical Techniques^a

^aN is the total number of radial features; V_i is the geographic location of the center identified from the vector analysis (lat/long); N_r^v (%) is the number of radial features defining the center (also given as % of N); P_{95} is the *Jowett and Robin* [1988] Gaussian peak statistic for 95% confidence level, to which the N_r^v values should be compared; B_c is the geographic location of the center identified from the beta analysis (lat/long); N^B is the total number of intersections derived by the beta analysis program from N; N_i^B is the number of intersections (also given as % of N^B) that determine the center; $E_k(N^B)$ is the expected value for the *Kamb* [1959] method significance level relative to the population of

from Anderson et al., J. Geophys. Res. (2001)

Global fault data set

available online at http://europlanet.dlr.de

from Knapmeyer et al., J. Geophys. Res. (2006)

Tharsis modeling: Strain distribution

from Banerdt & Golombek, LPSC (2000)

Late-stage tectonic deformation

km

- Young faulting (very Late Amazonian)
- Faults as pathways for fluids
- Faults as pathways for gas escape (methane)?

Fluid circulation along fractures

Fig. 2. (**A** to **C**) Examples of joints and surrounding halos of light-toned bedrock. The joints are the thin dark lineations. The scale bar and north arrow apply to each panel.

from Okubo and Schultz (2007)

Study area: Ophir Planum

Western

eastern Candor Chasma

Melas Chasma 0 hir N 100 km Coprates Chasma

Fault scaling

Relay ramps and fault linkage

from Hauber et al. (2007)

from Schultz et al., J. Struct. Geol. (2006)
Fault growth

from Polit et al., J. Struct. Geol. (2009)

Fault scaling: Applications

from Polit et al., J. Struct. Geol. (2009)

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Jointing in Sedimentary Rocks

from Kronberg (1995)

E. Hauber: Vulkanismus und Tektonik, Ringvorlesung HGF-Allianz "Planetenentwicklung und Leben", TU Berlin, 23. April 2009

Joints seen from Orbit!

Image: HIRISE on Mars Reconnaissance Orbiter

Summary

- Mars was endogenically active over all of ist history
- Activity decreased with time, shows episodic pattern, more and more focused in Tharsis and Elysium
- Volcanism mostly effusive
- Tectonic deformation mostly vertical (plume tectonics, one plate-planet)

Major questions

- Chronology of volcanism and tectonics (absolute ages)
- Volumes of volcanism (crustal production, outgassing)