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The Planetary Fourier Spectrometer

* PFS is an infrared FT spectrometer optimized for atmospheric studies.

* Spectral range:

« Two spectral channels, SWC (1.2+5.5 um or 1700+8200 cm!) and LWC
(5.5+45 um or 250~1700 cm-?).

* Spectral resolution: . Sampling step: 1 cm’!

 [IFOV (FWHM): 1.6° for the SWC; 2.8° for the LWC corresponding to
a spatial resolution of 7 and 12 km respectively, when Mars is
observed from an height of 250 km (nominal height of the pericentre).

No Fourier spectrometer has ever been flown around Mars covering the wavelength range 1 + 5 um.

PFS provide unique data necessary to improve our knowledge of the atmospheric properties, composition
and dynamics, as well as the surface-atmosphere interaction.

The discovery of Methane of Mars, the analysis of complex dynamical phenomena that occur in the
Martian polar regions, the study of the minor species and the non-LTE emission in the Martian Atmosphere
are only some of the important scientific results achieved by the analysis of PFS data.
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PFS LWC Spectrum
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Planck Function @ 275.5 K

SWC Calibration
M. Giuranna et al. (2005a) - PSS 53, 975-991
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Sample weighting functions for the 667cm'! CO, band. BaSIC Concepts

The examples shown give an indication of the height
range over which information on the temperature profile
can be obtained.
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- the surface temperature and emissivity

- the column density of dust and water ice

- the air temperatures as a function of altitude
- the surface pressure

- the column density of H,O and CO.

Adopting the very general formalism of
Bayesian analysis, an algorithm for the
scientific analysis of individual calibrated
PFS measurements has been developed,
allowing the simultaneous retrieval of the
above mentioned parameters.

Noteworthy, the high spectral resolution of
PFS allows the detection of several different
thermal gradients in the atmosphere, as
demonstrated by the effective modeling in the
same spectrum of absorbing and emitting Q-
branches.

Brightness Temperature (K)

Wavenumber (cm)

Typical quality of PFS spectra modeling for different thermal
conditions of the atmosphere. Black curves: single spectra measured by
PFS. Colored curves: synthetic spectra.

The Retrieval

Grassi et al. (2005) - PSS 53, 1017-1034
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Basic Concepts
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We have the Temperature profiles. ..

Global scale
(e.g., global circulation, weather and climate, dust storms...)

Regional scale
(e.g., polar regions, planetary waves, dust storms...)

Local scale
(e.g., Olympus Mons, Valles Marineris, dust storms...)
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Seasonal evolution of mean Meridional Temperature cross-section and
Zonal Wind derived from PFS-MEX (M. Giuranna et al., in preparation)

Zonal Wind (m/s). PFS
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Comparison with models: good
agreement for fields structure, less
for numerical values.
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Seasonal evolution of mean Meridional Temperature cross-section and
Zonal Wind derived from PFS-MEX (M. Giuranna et al., in preparation)
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We have the Temperature profiles. ..

Global scale
(e.g., global circulation, weather and climate, dust storms...)

Regional scale
(e.g., polar regions, planetary waves, dust storms...)

Local scale
(e.g., Olympus Mons, Valles Marineris, dust storms...)
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PFS/MEX observations of the condensing CO, south polar cap of Mars

(M. Giuranna et al., 2008, Icarus 197, 386—402)
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PFS/MEX observations of the condensing CO, south polar cap of Mars

(M. Giuranna et al., 2008, Icarus 197, 386—402) 1

These two distinct regional climates are the main responsible for the residual south polar cap asymmetry.
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In the western hemisphere, atmospheric
condensation is allowed in the entire 0-30
km column; surface ice accumulation is
dominated by precipitation.




PFS/MEX observations of the condensing CO, south polar cap of Mars
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PFS/MEX observations of the condensing CO, south polar cap o

(M. Giuranna et al., 2008, Icarus 197, 386—402)
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Different amounts of CO, ice deposited in the two
hemispheres; different sublimation rates due to
different grain sizes between CO, (fresh) snow and frost;
different amount of heat stored in the subsurface:

The dry ice sublimes entirely in the eastern hemisphere, while in the western hemisphere it
survives all year long as the RSPC.
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We have the Temperature profiles. ..

Global scale
(e.g., global circulation, weather and climate, dust storms...)

Regional scale
(e.g., polar regions, planetary waves, dust storms...)

Local scale
(e.g.,|Olympus Mons,|Valles Marineris, dust storms...)
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The atmospheric temperatures over Olympus Mons on Mars:
An atmOSpheriC hot ring (P. Wolkenberg et al., 2010, Icarus, in press)

PFS measurements: 01448
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To understand the meaning of the three features

mentioned above, we now study some single
atmospheric temperature profile.

Striking features:

There are three striking features
characterizing the volcanic region:

 two warm regions (north and
south of the volcano at 8° N and 26°
N, i.e. respectively at 10° and 8°
latitudinal distance, which we shall
call thermal bumps or hot ring);

+ two cold regions almost vertically
isothermal (temperature at 40 km 10
K higher than surrounding)

e One region on top the volcano
with a high temperature just above it,
decreasing quicker with altitude,
where the coldest temperature of the
entire region is also observed.

The surface temperature shows no
special feature.
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Altitiide (Km)

Pressure (mb)

The atmospheric temperatures over Olympus Mons on Mars:
An atmOSpheriC hot ring (P. Wolkenberg et al., 2010, Icarus, in press)

PFS measurements: 01448
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Interpretation:

The hot spot on top of the volcano
acts as the motor for a mesoscale
circulation.

Solar heating: the local air parcels
reach a temperature so high that they
become unstable and move upward,
with strong adiabatic expansion.

A cold collar is generated at the foot
of the volcano: air parcels are sucked
upward , and adiabatically cooled.

At some level the air parcels are
pushed side ways resulting in a quasi
isothermal vertical profile.

Finally, the air parcels fall downward
and are compressed adiabatically.
They follow the adiabatic lapse rate
and form a ‘‘hot ring” around
Olympus Mons.

110111 U1 previous 11gurc.
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The atmospheric temperatures over Olympus Mons on Mars:
An atmOSpheriC hot ring (P. Wolkenberg et al., 2010, Icarus, in press)

The “Hot Ring” <! — The “Hot Ring”

The “C0|d CO”ar” N The “HOt Spot”

_4+— (motor of the
mesoscale circulation)
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We have the Temperature profiles. ..

= Global scale
(e.g., global circulation, weather and climate, dust storms...)

= Regional scale
(e.g., polar regions, planetary waves, dust storms...)

= | ocal scale
(e.g., Olympus Mons,| Valles Marineris) dust storms...)

Workshop Mars III — Les Houches — 28 March - 2 April 2010



Fig. 1. Morning fog in Valles Marineris at LS = 38°.

iy

The image center is at 14.17°S latitude, 302°E longitude.

&
Us

measured and fitted spectra occross Vallis Morineris

Fig. 2. (a) PFS measured spectra inside (2), on the

edge of (3) and outside (1) Valles Marineris.
Spectrum 2 shows lower temperatures and the

Marineris and other regions of the
surface of Mars.

Temperatures have been determined
simultaneously to the imaging by
PFS. This identifies water ice rather
than frozen CO, as the cause of the
fog observations.

Numerical estimates of the water
vapor pressure and atmospheric
water content at the frost-point by a
I-dimensional planetary boundary
layer model indicate that conditions
in the planetary boundary layer can
indeed temporarily favor the
formation of ice particles.

The fog phenomena seem to be
induced or supported by orographic
effects but not directly by the




OK, Great!
We have the Temperature profiles. ..

...Please!...One more!
B ®)
%ﬁ f@}& é‘@é

= Global scale
(e.g., global circulation, weather and climate, dust storms...)

= Regional scale
(e.g., polar regions, planetary waves, dust storms...)

= | ocal scale
(e.g., Olympus Mons, Valles Marineris| dust storms.|..)
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A study of the properties of a local dust storm with
MeX OMEGA and PFS data osittinen et al ., 2009, Icarus 201, 504-516)

PFS Retrieved temperatures - Orbit 1201
T T T

1 T T T T
.- =
=1 =
1000 E7I 1 1 1 1 1 l*E
Q0 60 -30 [e] 30 60 [0
Latitude (deg)
PFS Retrieved temperatures - Orbit 1212
1 T T T T T T T . T ¥ T ' T
. Thermal fingerprint of the Local dust storm i
E Ls=135° |
MY =27 ,ﬁ .
g - Lat=3°S 1
1o~ Lon=24.7° \
L LT =13.30 |
ROUO E7I 1 1 1 1 1 1
90 60 -30 [e]

Latitude (deg)

Net cooling close to the surface and net heating in the upper atmosphere,
as expected from theoretical considerations (Gierasch and Goody, 1972).

PFS/LW Temperature profiles
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#1212, Dust storm

! —ee—eee #1212, North of Dust storm

r ¢ L In the core of the dust storm, the
10F ' § temperatures near the surface and at
30 Pa, were [110 K colder and [15 K
\ warmer, respectively

Pressure (Pa)

100 F

180 200
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Atmospheric dust tends to homogenize

the vertical temperature profile.

We observe the same trend in our
temperature profiles, but with a weaker
amplitude than for the regional or
global dust storms previously studied.
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End of Part One

(Temperature Profiles)

..next: MlInor Species
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PFS LWC Spectrum
——

Planck Function @ 275.5 K
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Detection of Methane in the Atmosphere of Mars

(V. Formisano, S. Atreya, T. Encrenaz, N. Igniatiev, M. Giuranna, 2004, Science, Vol. 306, 1758-1761)

0 of pr.
The chemistry-as-we-know-it scenario be 2l almerued

May 23 2004

* Methane implemented in the LMD global climate model with coupled photochemistry

CH4 mixing ratio (ppbv) L, = 000-030

Altitude (km)

methane should be
uniformly distributed
* Lifetime: 330 terrestrial years in the atmosphere of
- Source: 260 t terrestrial year" (Earth: 582x10° t year') Mars!!!




Methane inMartian atmosphere:

A. Seasonally averaged Methane (CH,) abundance [ppb]
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Mapping methane in Martian atmosphere with PFS-MEX data.

(Geminale et al., 2010, PSS, submitted)

20° x 20° map — Latitude vs Solar Longitude (season)
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Issues

The “conventional’” atmospheric chemistry does not produce measurable methane
variations on Mars, even 1in the case of a current, episodic, and localized source.

The condensation/sublimation cycle of CO, should generate large-scale methane
variations at high latitudes (but they differ from what is observed).

CSHELL/NIRSPEC: In the most favorable case, an atmospheric CH, lifetime of
less than 200 days is necessary to reproduce the observations.

PFS: measurements at high latitudes require a lifetime of less than ~3 years.
Longitudinal variations at high latitudes and seasonal trends at mid-to-low latitudes
cannot be reproduced.

The CH, source: quantitative agreement with the observations requires considerable
amounts: 50 000 — 150 000 tons.

This was just a quick overview...

SEE NEXT TALK BY M. MUMMA
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Temperature
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Latitude

90

Martian water vapor: Mars Express PFS/LW observations

(T. Fouchet et al., 2007 - Icarus 190, 32—49)

Good agreement after correction of TES retrievals
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Martian water vapor: Mars Express PFS/LW observations

(T. Fouchet et al., 2007 - Icarus 190, 32—49)

LMD GCM simulation: daytime H20 column Ls=180-210
90N

The simulation produces spatial
variations with maxima of water
vapor near Tharsis (120> W) and
Arabia Terra (30° E) in
qualitative agreement with the
observations. This suggests that
these spatial variations are
probably caused by some
atmospheric dynamical or
physical processes, and that a
subsurface water source (not
included in the model) is not
necessarily involved.
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Investigation of water vapor on Mars with PFS/SW of Mars Express

(M. Tschimmel et al., 2008 - Icarus 195, 557-575)
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Observations of Water VVapor and Carbon Monoxide in the Martian
Atmosphere with the SWC of PFS/MEX

(G. Sindoni and V. Formisano, PSS, submitted)

10°x10° maps of retrieved abundance of water vapour as a function of Longitude and Latitude
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There i1s much more...

Ground-based observations
OMEGA

SPICAM

PFS/LWC

PFS/SWC

TES

CRISM

MAWD

SEE NEXT TALK BY O. KORABLEV
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CO analyses with PFS data

Averaged CO mixing ratio as a function of longitude Ls, — goﬂ - 1 aoﬂ
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CO: almost uniform longitudinal distribution; globally averaged mixing ratio ~ 1.1 ppt;
Mixing ratio slightly higher than the “standard” value (0.8 + 0.3 ppt, Kaplan et al., 1969);

Enrichment in wintry hemisphere (non-condensible gas);

Anti-correlation with H,O abundance, only for H,O abundances > 350 ppm.
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There i1s much more...

Isotopic Ratios (C!2/C13, H/D, O'6/0!7/018,. ..)
H,0,

Oxygen Dayglow

NON-LTE emission (CO,, CO, ...)

CO, ice clouds

Polar Vortex

Limb Observations (Structure of atmosphere, vertical distributions,
high altitude aerosols, equatorial cloud belt,...)

...Interested anyone?...
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