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Planetary Data
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Mars: astronomical parameters

Earth Mars
solar distance 1.0 AU 1.5 AU
day 1.1:1 24.63 h
year 1.9:1 686.9 d
inclination 23.45° 25.19°
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Comparison Earth/Mars
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Interior Structure of terrestrial planets

* |nterior Structure models
aim at determining

— the bulk chemistry of the
planet (rheology)

— the masses of major
chemical reservoirs olivine —B-spinel

— the depths of chemical B-spinel — y-spinel
discontinuities and
phase transition
boundaries Inner core

Outer core

— the variation with depth
of thermo-dynamic state
variables pressure,
temperature, and
density (p, P, T)

— the physical state of the
reservoirs core mantle
and possible inner core



Many open questions!

Présent ?




Top-level science goals for Interior

 Determine the radius of the Martian core to
within (£50 km)

« Confirm the state of the core: solid, liquid and

determine, if the core is liquid, whether there is
or not an inner core

e Determine crustal thickness
e Determine mantle seismic velocities

* Determine the locations of major phase
transition in the mantle (gives insight to the

mineralogy) Why that?



= To obtain the core and mantle density
and composition

= Understanding planetary formation

= Understand planetary evolution

= Decide on the existence of an inner
core

= Decide on the existence of giant mantle
plumes

=Understanding the likely existence of
an early active dynamo and an early
magnetic field



What do we know about interior
Constraints structu re?

— Magnetic anomalies

(either Fresent day AR T SRR
magne field or remanent [ 385 @y 0
magnetic field) ‘
— Mass
— Moment of inertia factor AL L)
— Gravity field N A=NELA
— Tides o = _ =4
— Surface rock chemistry/ | g i
mineralogy
— Topography B o
— Crustal thickness e Future:
— Cosmochemical — Rotation!
— Laboratory data — Seismology!
— Plate tectonics — Heat flow !

— Volcanism — Conductivity!
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Remnant crust magnetization




What do we know about interior

Constraints structure?

— Magnetic anomalies

— Mass

— Moment of Inertia factor
— Gravity field

— Tides

— Surface rock chemistry/
mineralogy

— Topography
— Crustal thickness
— Cosmochemical

MGS Gravity Field of Mars

e Future:
— Laboratory data — Rotation! GEODESY
— Plate tectonics — Seismoloav!
— Volcanism — Heat rowg!y.

— Conductivity!



Mean density constraint

- Mean
(uncompressed)
density is related

to the bulk

chemical
composition of a
planetary body.
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- Mol factor constrains

Moment-of-Inertia factor (Mol)
constraint

if

similar to bulk
density (p,/p ~ 1
e.g., The Moon).
' if
similar to bulk
density (p/p ~ 1
e.g., Mercury).

* The mean mantle density of Mars is relatively well determined

by the planet's Mol factor.



What do we know about interior

Constraints structure?

— Magnetic anomalies

— Mass

— Moment of inertia factor

— Gravity field

— Tides e

— Surface rock chemistry/ ¢ © = =
mineralogy POl

— Topography

— Crustal thickness

— Cosmochemical

— Laboratory data _ ion!
— Plate tectonics _ gggggl‘égy!

— Volcanism — Heat flow !
— Conductivity!

e Future:



Mars Global Surveyor MOLA-Map, GSFC/NASA/JPL

= The topographic heights at the Martian surface range from plus
25km to minus 8km.

= Earth: plus 9km to minus 11km.



Gravity and Topography

« Topography measured
by MGS laser altimeter
(600 million shots).

« Vertical accuracy ~1 m!

« Gravity data obtained
from radio tracking;
Doppler shift related to
Internal mass
distribution
(undulations of
topography and crust-
mantle boundary).

Zuber et al., Science, 2000.



Crust thickness

Present estimates of mean thickness are entirely based
on indirect geophysical evidence, e.g. local relation &
between gravity and topography
Lunar

— minimum underneath Hellas to 110 km
southern highlands

— maximum underneath Tharsis R Mk
~ Martian crust 30 to 80 km thick (MGS/Mola/GSFC)
N S

Variable thickness e
— 30 km beneath northern lowlands 80 km beneath =




What do we know about interior

Constraints structure?

— Magnetic anomalies Pyrohtl\;f

(either Present day 200

hase diagram
ars mantle

magne field or
remanent magnetic field) | o

— Mass 400 |

— Moment of inertia factor

600 1
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— Gravity field
— Tides

— Surface rock chemistry/
mineralogy
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— Topography 2700
— Crustal thickness
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— Cosmochemical * Future:

— Laboratory data — Rotation!

60

— Plate tectonics — Seismology!
— Volcanism — Heat flow !

— Conductivity!
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What do we know about mterlor

Constraints structure?

— Magnetic anomalies
(either Present day
magne field or
remanent magnetic field)

— Mass .
— Moment of inertia fac
— Gravity field
— Tides

— Surface rock chemistry/ |
mineralogy

— Topography
— Crustal thickness
— Cosmochemical  Future:

— Laboratory data — Rotation!
— Plate tectonics — Seismology!
— Volcanism — Heat flow !

— Conductivity!




Earth: Crust Formation in
Plate Tectonic Regime

1 Efficient crust formation at the divergent plate
boundaries (pressure relased melting close to
the surface) ~ 17 km3/yr

1 Two-stage crust
formation

1 Possible strong
plume volcanism
In early evolution




Crust Formation in a One-Plate
Planet

1 Melt production underneath the stagnant
lid

onvecung
mantle
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CCL: Interior structure: The data set

Model constraints

&  Moon
+ surface radius ! RJ/R,=0.25
* mean density .
« moment of inertia |
» gravitational field E”mpaGanymede

« surface chemistry
« cosmochemistry
« laboratory data

Mars
Future constraints % RJR,= 0.5
« geodesy
*seismology
« heat flow
«conductivity Mercury
Titan s R/R,= 0.8

Model assumptions
« hydrostatic conditions
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Two-layer structural models (1)

= 2 constraints: density o and Mol factor /MR®.

3
I'c
P =pn,t (o, —pm)(ﬁj

) Lol o)

3 unknowns: core radius r_, mantle density p_, core
density o..



Simple two layer structure

Mantle and Core Densities and Core Mass Fraction
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Three-layer structural models

- 2 constraints: mean density 0 and Mol factor /MR®.

P =ps+(p, —pm)(ﬁj +(0n — Ps )(r—gj

| 2 re ) r :
Wj —5{05 +(o, _pm)(ﬁj +(On =Py )(Ej }

* 9 unknowns: core radius r,, crust-mantle radius r_,
crust density p,, mantle density p_, core density o..



Mantle density

Pm: kgm3 Pm kg m™
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Crust thickness increase is more pronounced for denser
crusts if mantle density is kept.
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Core-mantle boundary pressure
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Pressure at the core-mantle boundary is mainly determined by core
size and is less dependent on crust thickness.

Perovskite phase transition possibly between 22 and 24 GPa, so does
not exist for large core (a planet with a P_,,=20GPa might have no pv)




Mantle phase
transitions

:
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New geophysical observations

- Re-analysis of MGS tracking and MPF & VL ranging
resulted in C/MR? = 0.3650 + 0.0012 (Yoder et al., 2003).

— significantly lower than most often used value C/MR? =
0.3662 = 0.0017 (Folkner et al., 1997).

— Implies stronger central mass concentration

+ Tidal potential Love number &, = 0.15 = 0.01 (Yoder et al/.,

2003), A, = 0.15 £ 0.01 (Konopliv et a/., 2006), and 4, =

0.16 £ 0.01 (Konopliv et a/., 2010) suggests hot interior
with liquid (outer) large core.

- Tidal potential Love number &, = 0.12 + 0.01 (Marty et a/.,
2009) suggests smaller liquid core.



Interior structure model of Mars as recently
derived at ROB (Rivoldini et al. 2010)

* spherical symmetric, hydrostatic and
elastic

* homogeneous crust

* depth dependent thermoelastic
properties in mantle and core

* convecting liquid Fe-S core

* solid y-Fe inner core (melting data
dependent)




Model parameters

* core size (allowing for solid pure Fe cores to liquid Fe-x wt%S
cores with sulfur concentration x bounded by planet mass)

* several bulk mantle mineralogy models (input from SNC -
Shergottites-Nakhlites-Chassigny- meteorites, SNC chemical
composition representing early mantle, different from the CI

chondritic composition)
(Dreibus and Wianke 1984, Lodders & Fegley 1997, Sanloup et al 1999, Mohapatra et al. 2003)

* 2 mantle temperature end-members (hot and cold) (resulting from

convection simulations compatible with an early geodynamo)
(Verhoeven et al. 2005)



Interior structure relevant data

® size and mass
1:=3389km, m,=6.4185 10?3 kg

* average moment of inertia
MOI=0.36554+0.00086 (Konopliv et al. 2005)

* crust density and thickness
0=2900£200kg/m>, d=50+12km (Wieczorek et al. 2004)

* phase diagrams of mantle minerals and core constituents

* high pressure and temperature thermoelastic data



Trade-off between

Dreibus & Wanke
compositional
model. |
and mantle B

temperature model &

(Breuerand Spohn, g

2003).

Fe/Si and k4,

from A. Rivoldini from ROB
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Core size-core sulfur concentration
(compatible with Mol and k, ranges)

0.08 0.10 0.12 0.14 0.16 0.18

0.08 0.10 0.12 0.14 0.16 0.18
Xs [wt]



Main results

* MOI and k2 compatible models have fully molten
cores

* core size: 1640+150km [1490km,1790km]

* core sulfur concentration: 13x6wt% [7/wt%,19wt%]
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Magnetic Field Generation
Necessary conditions for existence

1 A conducting fluid
1 Motion in that fluid

1 Cowling’s Theorem
requires some
helicity in the fluid
motion




Cores

1 The magnetic fields of
terrestrial planets and
satellites are
produced in their
cores

1 There is no doubt that
the planets and most
of the major satellites
have iron-rich cores




Dynamos

1 Hydromagnetic dynamos

i1Thermal dynamos

1IChemical dynamos

G. Glatzmeier‘s Dynamo model for Earth



Thermal Dynamo

= Fluid motion in the liquid ( () { =3
iIron core due to thermal
buoyancy
(=>cooling from above)

' N
efficient heat transfer /inefficient heat transfc

from the lower mantlg from the lower mantle 7
N P

= ‘Critical’ heat flow out of -
the core

thermmal convection ily fied
in the core




‘Critical’ Heat Flow

1 Mars, Mercury 5-20 mW/m?
1 Earth, Venus 15 — 40 mW/m?

1 Galilean Satellites, Moon <7 m\W/m?

Large uncertainities due to poorly known
parameters



Vigour of Core Convection

La
]

1 A sufficiently large AT
between the core and
the mantle iIs required
In order to drive
thermal convection In
the core
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1 If AT Is too small than S S——
the core will be cooling elative radius R/R,
by conduction

Sohl and Spohn, 97



Chemical Dynamo [ERErEERs

“(Fe-FeS)

= Existence of light
alloying elements in the
core like S, O, Si

= Core temperature
between solidus and
liquidus Fe + Liquid

Phase diagram taken at 1 bar:

Courtesy A. Rivoldini SO0 O R T0R 0%




Chemical Dynamo

1 Compositional
bouyancy released by
Inner core growth

1 Difficult to stop
operating

Mercury Model by Conzelmann and Spohn



Melting Temperature as Function

of Pressure

Eutectic temperature as a function of pressure and melting temperature of
Fe; for Mars, eutectic temperature increases as a function of pressure;
eutectic sulfur fraction increases as a function of pressure (next slide).
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Some First Conclusions

1 Thermal convection (fluid core without inner core
growth): Inefficient for long-term dynamo
generation; a large AT Is needed

8 Compositional convection (inner core growth):
Efficient for dynamo generation; difficult to stop

1 The mantle determines (provides most important
constraints) whether a terrestrial planet has core
convection and whether it can have a dynamo



= Early Martian (thermal) dynamo possible
with a superheated core

Early Plate Tectonics
— — — |mmaobile Stagnant Lid
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Conclusions about Mars’
magnetic field

i Early plate tectonics consistent with early strong
magnetic field

1 Crustal evolution with early plate tectonics
Inconsistent with observations

1 Stagnant lid convection consistent with crustal
evolution and early magnetic field (thermal
dynamo) if the core is superheated by more than
100 K.
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Heat Sources

1 Primary energy

1 Accretion

1 Gravitational energy due to core formation

1 Decay of radioactive elements
1 Uranium
1 Thorium

1 Potassium



Heat Transport Mechanisms

1 Plate tectonics
(Earth, early Mars?, early
Venus?)

1 Stagnant lid convection
(Mercury, Venus?, Mars,
\Y[eJelp

1 Lithosphere delamination
(Venus?)

Magma transport (volcanism)

.||
I
"StagnarlLt Llid"

>




MANTLE CONVECTION SIMULATION

Martian mantle convection without phase transitions

1.6 GA 2.5 GA

3GA 3.4 GA




Plume Volcanism on Mars?

= Early global volcanic activity reduces
during the evolution in mainly one or
two regions: Tharsis & Elysium




Conditions required to sustain
plumes

1 Perovskite layer

1\With a perovskite layer close at the core-mantle
boundary it might be possible to generate a large
plume early in the evolution but this will be very
weak if existant after about 1Ga.

1 Heated core

1 Chemical layering



Model from Sandra Schumacher (ESA)
Temperature distribution
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Model from Sandra Schumacher (ESA)
Model

+«— 1000 km ——
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Model from Sandra Schumacher (ESA)
Temperature increase
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Mars Express
2003







Comparison between

gravity and topography

500 Hmgall -g00o -4000 un:ln 000 Hal

Sometimes very strong correlation, sometime no correlation at all,
sometimes no topography signal when gravity signal, and
sometimes no gravity signal when topography signal



Different types of loading

‘%‘ Internal loadmg
w %

|

Good model 1f Necessary if
gravity and topography high gravity signal
correlate well but small topography




latitude: [-90:90]

Gravity passes above targets

official MEX coverage below 500km
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15000
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-b000
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longitude: [0:360]



Sensitivity
* Pericenter: in the range 272-306 km

« Signal 4 times stronger than at altitude of 370 km

« Noise on velocity: 0.2 mm/s (0.0015-0.003 mm/s? on
filtrated acceleration)

MEX LOS data acceleration

/

003 -

acceleration / 370km

L

5
=
L=}
ra

MGS altitude LOS acceleration Mgf gravity field theoretical

"""""""""

i y - |
Resdual acceleration [mmys™
]

—0.01

—410 — 30 =20 -10 0 10 20
Latitude [degrees]



Method

Acceleration = filtered derivative of raw Doppler residual
(filtering at 70-80 sec)

Resampling 1n space to get equal spacing at surface (no
wavelengths under 300 km)

Predicted acceleration along LOS from global field
MGSS85F2 and from topography compensated by
lithospheric deflection

Spectral analysis in 1-D of observations and predictions:
power spectrum, coherences, and admittances
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Admittance (blue and black)
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Admittance (blue and black)

Profiles above Olympus: spectral analysis
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What do we know about interior

Constraints structure?

— Magnetic anomalies

— Mass

— Moment of inertia factor
— Gravity field

— Tides

— Surface rock chemistry/
mineralogy

— Cosmochemical

— Laboratory data
— Plate tectonics

— Volcanism

MGS Gravity Field of Mars

* Future:
— Rotation! Geodesy!
— Seismology!
— Heat flow!
— Conductivity!



Interne structure of Mars

- Solid mantle
- Liquid core
- Inner core (!?




Tomography

seismometers
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NASA’s DSN and ESA’s ESTRACK networks of

tracking stations
»To track any spacecraft or Lander in the solar system

by O]
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—
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U
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g ESA’s 34 m. antenna at New Norcia
& Cebreros (Mars Express, Venus Express)
. 2 Radio-link for data & telemetr
Diameter of 25 to 70 meters. y
Precision: : : :
» Doppler & range radio-tracking mainly
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ating. Maser Clocks ionospheric and interplanetary plasma perturbations)










Orbit determination

— model of “macro-model” of the s/c 1.e. 6 faces and 2 solar
panels + reflectivity and absorptivity values for each face;

— orientation of the faces of the satellite from predicted
quaternions;

— model of Mars’ surface albedo + Infra-Red flux =2 radiation
fluxes Fy

— model of Mars’ atmospheric density =» pressure drag F

— shift 1n position between the center of mass of MEX and the
center of phase of the HGA

— event files will be used to evaluate the epoch of desaturation
maneuvers

— QGravity field and its time variation, 1.e. the first zonal
coefficients of the gravity field (J2, J3, J4 and J5)

— Love number k2: later
— Ephemerides
— Phobos and Deimos mass/origin






T1des and interior structure
T1des can be used for the determination of core
properties
e Core radius between 1400 km and 1800 km
* Core liquid?

* Tides depend on interior structure: e.g. larger
tidal displacement for fluid core

* Driving force precisely known



Orders of magnitude

» Tidal potential U ocGM gr?/d3: 7% of Earth

« Relative to U=-GM/r, g=GM/r?
— U/U=110% <«—— Earth:2.510%

1. xcUi/g=3cm

2. gr/g=2U/U=2U/U~210°
—~  gr~pugal

3. U/U=110%



Tidal potential

e Direct effect of Sun, Phobos, Deimos

 Indirect effect of other solar system bodies
(ephemerides)

* Phobos/Sun: 8%, Deimos/Sun: 0.08%
* Up to degree 4
« Truncation at 10°m?/s? (0.1 ngal): 203 tidal waves



Mars body tides
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[Love numbers

Reaction of Mars to unit forcing

Latitude and frequency dependence included

h, | for tidal station displacements

k for external potential perturbation

Gravimetric factor o for surface gravity variations

Degree 2 Love number are very sensitive to the
core: changes of 35% for different models



Love number h
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Love number k

k Love numbers for solid/liquid
core and different core sizes
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Tidal etfect on a satellite ait 400km altitude
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liquid core
solid core
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relative potential
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200 400 &00
mean scolar day

« Relative differences between models AU ~10-1% (Ar <Imm)

* Recent JPL and GSFC gravity maps of Mars give
uncertainties in estimated C,  and S, coefficients of 10-1°.

» Total signal same order of magnitude as ice cap loading



Values of the k2 tidal Love number found in the literature
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Also possible: a direct link with
the Earth! MER Spirit!




Precession and nutation of Mars
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Amplitudes

A

rigid Mars’ nutations

250 days

A/ transfer function

Amplitudes

>

I >
250 day7/

non-rigid Mars’ nutations

250 days

IMPORTANT FOR:

* retrograde ter-
annual nutation

* retrograde semi-
annual nutation
 retrograde 1/4
year nutation
 prograde semi-
annual nutation




Nutation Amplitudes

Residuals between solid

— solid core and liquid case
— liquid core
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Strategy for Geodesy

precession/
nutations

/

inertial
reference frame / N

X

rotation rate/
variations of
length-of-day

Mars’ interior
core: liquid/solid?

X

/

polar
motion

atmosphere
ice cap

|

reference frame
tied to Mars






meter

NEtlander lonosphere and Geodesy Experiment

Length-Of-Day (LOD) Variations
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Computation of the Atmospheric angular
momentum

~ Motion term : relative
- angular momentum of

the atmosphere

% %k Kk
* k kX

ROB




Wind and matter term in angular momentum
of the atmosphere
=> change in Mars’ rotation & polar motion.

1. 8. 0. 8.8 ¢

* %k Kk
ROB




General circulation

% %k Kk
* k kX

ROB



Torgue between Mars and its fluid
layer
o |
Pressure torque4




Torgue between Mars and its fluid
layer

Gravitational torque




Torgue between Mars and its fluid
layer

Friction torque \




Length-Of-Day (LOD) Variations

ice cap &

atmosphere
annual
signal on 7.6 m
equator
semi-annual
signal on 49 m
equator







SEIS:
PKP, PcP,
shadow zone,
tides,
normal modes




The movies used 1n the presentation are on:
http://www.astro.oma.be/D1/DIDAC/index.php
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