Radar Mapping and Water Reservoirs on Mars

Jeffrey Plaut NASA Jet Propulsion Laboratory California Institute of Technology

Mars 4 Workshop Les Houches – 29 March 2010

Potential Current Reservoirs of H₂O on Mars

- Polar ice caps ("Layered deposits")
- High-latitude ground ice
- Remnant ice sheets and glaciers from previous climate regimes
- Hydrous minerals
- Groundwater
- The atmosphere

South polar deposits - THEMIS on Odyssey

MARSIS on Mars Express

SHARAD on MRO

SHARAD Sounding Radar on MRO

Stack individual echo traces along track to build up a radargram

MOLA Topo MARSIS Bed Measurements

Bed Elevation

South Polar Layered Deposits Results

- MARSIS signals penetrate most of the SPLD to their base
- Thickest section: > 3.7 km
- Minimal attenuation of signals implies clean ice (<~5% dust)
- Basal topography:
 - Generally low relief
 - Unexpected depressions in near-polar area
 - No signature of flexural deflection due to load Lithosphere elastic thickness >150 km; implies low T gradient
- Thickness:
 - Asymmetry of deposits
 - Anomalous thickness on distal lobes, near-polar area
 - Volume 1.6 x 10^6 km³ = 11 m global layer
 - (best estimate to date, consistent with earlier studies)

MARSIS - North Polar Layered Deposits

North Polar Layered Deposits - "Basal Unit"

Basal Unit Mapped

3709

North Polar Layered Deposits: SHARAD and MARSIS

North Polar Radargrams

Selvans et al., 2010 in press

Planum Boreum Thickness

Basal Unit, NPLD, Planum Boreum Thickness

Selvans et al., 2010 in press

Basal Unit Bottom, Top and Planum Boreum Elevation

SHARAD NPLD - Time Representation

SHARAD NPLD - Depth Representation

MARSIS North Pole Results

• Basal Unit and superimposed NPL deposits are distinct in character, volume and geometry (different depocenters). Implies climate shift, erosional episode(s).

• Volumes:

Basal Unit	0.5 M km ³	
NPLD	0.8 M km ³	
Total Planum Boreum	1.3 M km ³	(South: 1.6 M km ³)

 Topography below BU is flat Confirms lack of deflection Consistent with cold, thick lithosphere

South Polar Plains

 MARSIS detects a boundary 100s of m to ~ 1 km deep in many areas of plains <u>off</u> of the SPLD.

• The locations of these subsurface interfaces closely match the Hesperian Dorsa Argentea Formation (DAF).

500 km

2655

Prometheus basin floor Max depth ~ 600 m

2685

Sisyphi Planum, South Crater Max depth ~ 800 m

2638

Dorsa Argentea ridge area Max depth ~ 700 m

All MARSIS Subsurface Detections Off the SPLD

HRSC Dorsa Argentea Sinuous Ridges

Geologic Map - Kolb and Tanaka 2001

Geologic Map - Kolb and Tanaka 2001

Dorsa Argentea Formation Summary

 MARSIS detects lower boundary of a unit off the SPLD, covers an area ~1 M km² - comparable to SPLD area.

• Depth to interface 100s of m to > 1 km.

 Strong association with Hesperian Dorsa Argentea
Formation. In places MARSIS may see the lower contact of the DAF.

Mars Odyssey GRS Neutron Spectrometer Lower-Limit of Water Mass Fraction on Mars

W. Feldman - GRS

"Clean" Ground Ice Under the Phoenix Lander

- CTX continuously discovers more highlat. impacts
- HiRISE follow-ups show more craters with associated ice
- 5 sites in total
- All new impacts poleward of 41N have associated ice
- All a few meters across

S. Byrne, C.M. Dundas, M.R. Kennedy, M. Mellon, D. Shean, I. Daubar, S. Cull, K.D. Seelos, S. Murchie, B. Cantor, R.E. Arvidson, K. Edgett, A. McEwen, T. Harrison, L. Posiolova, F.P. Seelos HiRISE, CTX and CRISM teams

CRISM Findings:

- Detected water ice
- Spread over a few pixels

18m

Ice patches faded away over ~100 days

Arcadia Planitia

Arcadia Layer 60-80 m max thickness

6793_02

Arcadia Layer SHARAD Detections

Arcadia and Amazonis Subsurface Units

Amazonis map from Campbell et al., 2008

Arcadia to Amazonis - 9496_01

Arcadia to Amazonis - 9496_01

2 μs = 100 - 150 m

Estimating thickness to get ϵ

8441_01

CTX 8408 North Outlier

Utopia Planitia 6283_02

Utopia Planitia CTX 7384

Utopia Planitia 40-50N 80-85E Morgenstern et al., 2007

MOLA Elevation – NASA/GSFC

Deuteronilus Mensae

Geomorphic Settings of Lobate Aprons

THEMIS Day IR - ASU

Subsurface, not Clutter

Converting Time to Depth

Converting Time to Depth

Converting Time to Depth

Attenuation of the Subsurface Reflection

. ..

Depth, m

SHARAD Coverage – January 2010

Detected Interfaces

Valley in West Deuteronilus MOLA Elevation on THEMIS Day IR

THEMIS VIS

Simulation by UT-Austin

Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars

John W. Holt,¹* Ali Safaeinili,² Jeffrey J. Plaut,² James W. Head,³ Roger J. Phillips,⁴ Roberto Seu,⁵ Scott D. Kempf,¹ Prateek Choudhary,¹ Duncan A. Young,¹ Nathaniel E. Putzig,⁴ Daniela Biccari,⁵ Yonggyu Gim²

Published by AAAS

HRSC perspective

Summary – Lobate Aprons

- SHARAD signals penetrate lobate debris aprons to ~1 km depth.
- Time-to-depth conversion using an ice dielectric (~3) brings reflectors in line with surrounding valley floors.
- Low attenuation of signals is consistent with predominantly ice composition: probably > 80% ice, could be more.
- Radar evidence is consistent with the vast body of evidence for icerich lobate debris aprons.
- Implications: In the mid-latitudes of Mars,
 - Large volumes of ice were deforming during Amazonian time;
 - Much of this ice is preserved today;
 - These are intriguing targets for *in situ* exploration.

Yellow = Ice-rich

Mars Global H₂O Inventory

Reservoir	Global Layer Thickness
Atmosphere	< 50 microns
Ground Ice (Neutron and Gamma Rays)	> 14 cm
Polar Layered Deposits	20-25 m (MARSIS and SHARAD)
Circum-polar units	< 10 m (MARSIS)
Lobate Debris Aprons Lineated Valley Fill	~ 10-100s cm (SHARAD)

Subsurface Sounding of Medusae Fossae Formation

Watters et al., 2007

Subsurface Sounding of Medusae Fossae Formation

Watters et al., 2007

Subsurface Sounding of Medusae Fossae Formation

