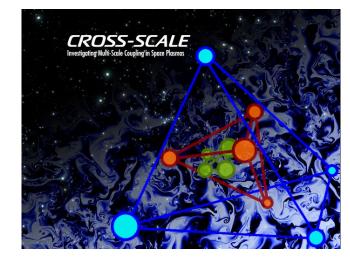
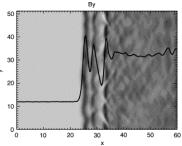
Cross-Scale Multi-scale Coupling in Space Plasmas


Steve Schwartz & Peter Falkner On behalf of the Cross-Scale Science Study Team

1 December 2009

Outline

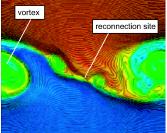
- Science
- Payload
- Operations
- Mission
- Development Approach



Cross-Scale

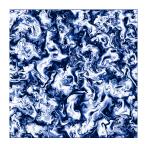
Universal Plasma Processes

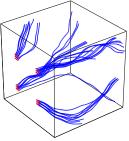
How do shocks accelerate and heat particles?


CV Q: "How does the Solar System [and other plasma systems] work?"

Universal Plasma Processes

- How do shocks accelerate and heat particles?
- How does reconnection convert magnetic energy?

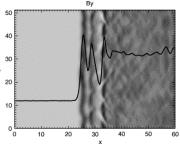

CV Q: "How does the Solar System [and other plasma systems] work?"



Cross-Scale

Universal Plasma Processes

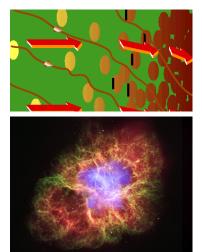
- How do shocks accelerate and heat particles?
- How does reconnection convert magnetic energy?
- How does turbulence control transport in plasmas?


CV Q: "How does the Solar System [and other plasma systems] work?"

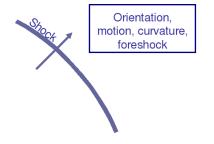
Universal Plasma Processes

- How do shocks accelerate and heat particles?
- How does reconnection convert magnetic energy?
- How does turbulence control transport in plasmas?

CV Q: "How does the Solar System [and other plasma systems] work?"

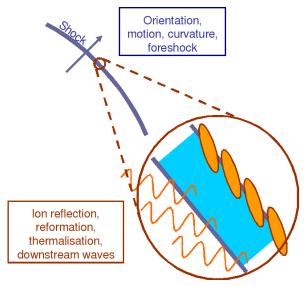

How do shocks accelerate and heat particles?

Questions:

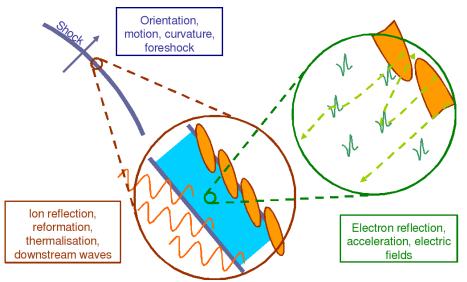

- Acceleration?
- Energy partition?
- Variability?

Universality:

- Cosmic ray acceleration
- CR injection at sub-shock with $M \sim 5 10$
- Variability/efficiency of electron acceleration? (synchrotron radiation used as proxy for ion acceleration)

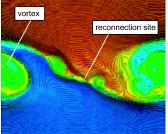


Cross-Scale Coupling at Shocks



Cross-Scale Coupling at Shocks

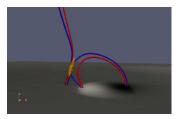
Cross-Scale Coupling at Shocks

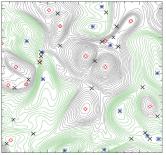


Universal Plasma Processes

- How do shocks accelerate and heat particles?
- How does reconnection convert magnetic energy?
- How does turbulence control transport in plasmas?

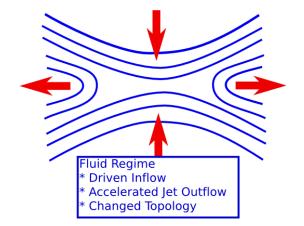
CV Q: "How does the Solar System [and other plasma systems] work?"

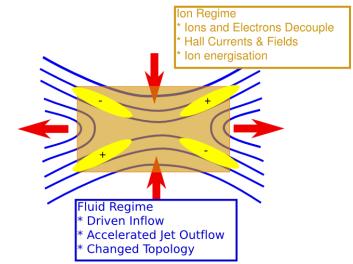

How does reconnection convert magnetic energy?

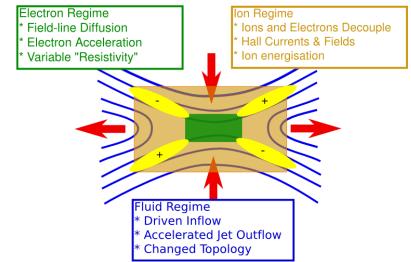

Questions:

- Initiation?
- Magnetic topology?
- · Particle acceleration?

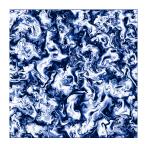
Universality:

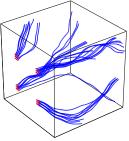

- 3D reconnection in solar flares
- Turbulent reconnection
- Relaxation of galactic dynamo to large-scale field
- Disruption events in laboratory plasmas


Cross-Scale Coupling and Reconnection


Cross-Scale

Cross-Scale Coupling and Reconnection

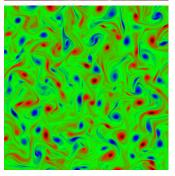

Cross-Scale Coupling and Reconnection



Universal Plasma Processes

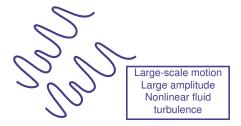
- How do shocks accelerate and heat particles?
- How does reconnection convert magnetic energy?
- How does turbulence control transport in plasmas?

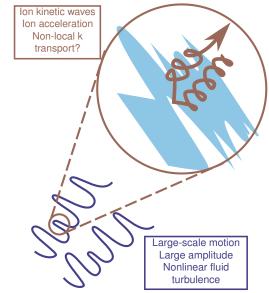
CV Q: "How does the Solar System [and other plasma systems] work?"

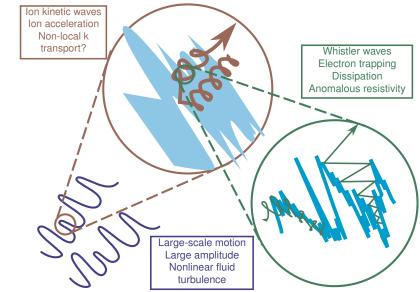


How does turbulence control transport in plasmas?

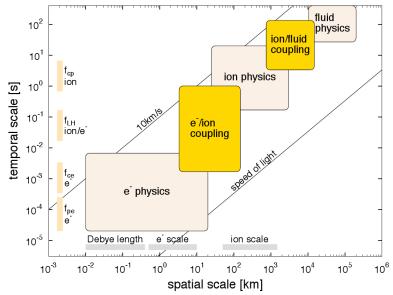
Questions:


- Energy cascade?
- Anisotropies?
- Coherent structures?
- Universality:
 - · Non-local & inverse cascade
 - Field-line wandering/CR modulation & propagation
 - Heating, acceleration, kinetic modes, ...

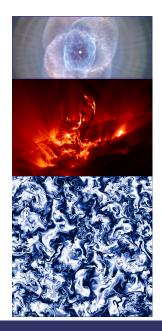

Cross-Scale Coupling and Turbulence


Cross-Scale

Cross-Scale Coupling and Turbulence



Cross-Scale Coupling and Turbulence



Science Requirements: Conspiracy of Scales

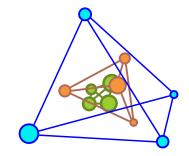
- Time-varying
- Fundamentally 3D
- 3 spatial & temporal scales electron, ion & fluid
- Nonlinearly coupled ⟨Behaviour⟩ ≠ Behaviour of ⟨⟩
- · Simultaneous multi-scale
- Focus: coupling between scales
- Collisionless \Rightarrow Kinetic
- Plasma ⇔ EM fields
- Near-Earth: unique *in situ* plasma laboratory

- Time-varying
- Fundamentally 3D
- 3 spatial & temporal scales electron, ion & fluid
- Nonlinearly coupled ⟨Behaviour⟩ ≠ Behaviour of ⟨⟩
- · Simultaneous multi-scale
- Focus: coupling between scales
- Collisionless \Rightarrow Kinetic
- Plasma ⇔ EM fields
- Near-Earth: unique *in situ* plasma laboratory

10 km; 10 ms: comprehensive P/L

Cross-Scale

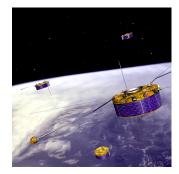
- Time-varying
- Fundamentally 3D
- 3 spatial & temporal scales electron, ion & fluid
- Nonlinearly coupled ⟨Behaviour⟩ ≠ Behaviour of ⟨⟩
- · Simultaneous multi-scale
- Focus: coupling between scales
- Collisionless \Rightarrow Kinetic
- Plasma ⇔ EM fields
- Near-Earth: unique *in situ* plasma laboratory



10 km; 10 ms: comprehensive P/L 500 km; 1-5 s: targetted P/L

Cross-Scale

- Time-varying
- Fundamentally 3D
- 3 spatial & temporal scales electron, ion & fluid
- Nonlinearly coupled ⟨Behaviour⟩ ≠ Behaviour of ⟨⟩
- · Simultaneous multi-scale
- Focus: coupling between scales
- Collisionless \Rightarrow Kinetic
- Plasma ⇔ EM fields
- Near-Earth: unique *in situ* plasma laboratory

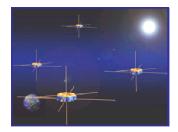

10 km; 10 ms: comprehensive P/L 500 km; 1-5 s: targetted P/L 5000 km; 30 s: context P/L

State of the Art

Cluster

- · First 3D plasma measurements
- · One scale at a time
- Results highlighted need for simultaneous multi-scale
- Success of mission extension also confirming need for all 3 scales in 3D

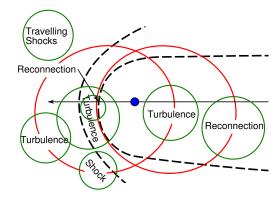
Cross-Scale

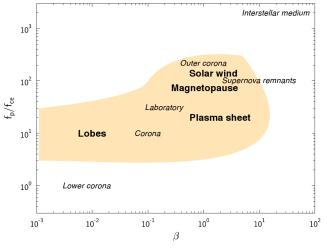

State of the Art

Cluster

- · First 3D plasma measurements
- · One scale at a time
- Results highlighted need for simultaneous multi-scale
- Success of mission extension also confirming need for all 3 scales in 3D

MMS

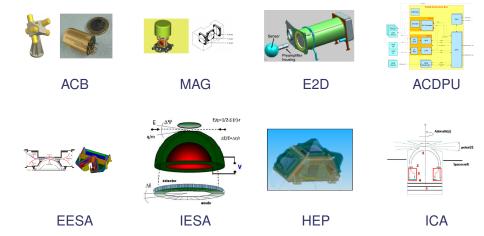

- · Access to electron scales in 3D
- · Only one scale at a time


Science Orbit

- Near-Earth space contains
 - Shocks
 - Reconnection
 - Turbulence
- 7 ESA: dual-scale coupling
- Modular instrument
 accommodation
- Scale-specific minimal payload
- Standardised bus
- Shared objectives and orbit
 with JAXA/SCOPE

Science Requirements: Parameter Space

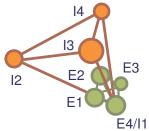
Note wide range of conditions in near-Earth space Overlap with other plasmas



Measurement Requirements

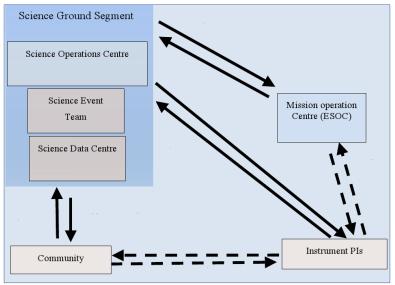
Abbrev	Instrument	Measurement *						
EM Fields								
ACB	AC Magnetic Field	Hi-f waveform & spectra						
MAG	DC Magnetometer	Magnetic field to 128 Hz						
E2D	Spin-plane electric field wire booms	DC & AC electric field						
ACDPU	Fields Electronics Box	Density sounder, wave anal-						
		yser, fields control, processing,						
		power						
	3D $f(\vec{v})$ Partic	les						
EESA	Electron analyser	3D electron $f(\vec{v})$ to 30 keV						
IESA	lon analyser	3D ion $f(\vec{v})$ to 30 keV						
HEP	High energy particle detector	3D particles to 1 MeV						
ICA	lon composition analyser	3D ions to 40 keV/q by mass						
CPP	Common particle processor	control, data processing						
ASP	Active S/C Potential control	ion current						
* See Yellow Book & Science Req. Doc for performance, resolution, etc.								

Instrumentation - Strong Heritage



Cross-Scale

Payload Deployment


E1	E2	E3	E4/I1	12	13	14
ACB	ACB	ACB	ACB	ACB	ACB	ACB
MAGx2	MAGx2	MAGx2	MAGx2	MAGx2	MAGx2	MAGx2
E2Dinclx4	E2Dx4	E2Dinclx4	E2Dx4	E2Dx4	E2Dx4	E2Dx4
ACDPU	ACDPU	ACDPU	ACDPU	ACDPU	ACDPU	ACDPU
EESAx4	EESAx4		EESAx2	EESAx2	EESAx2	EESAx2
ASP	ASP		IESAx2	IESAx4	IESAx2	IESAx2
			HEP		HEP	ICA
CPP	CPP		CPP	CPP	CPP	CPP

- Fields suite common
- · Particle instruments targetted & balanced
- Initial ion-electron coupling configuration
- · Reconfigure or join international partners

Science Ops - Early planning, Good data access

Cross-Scale

Science Data Selection

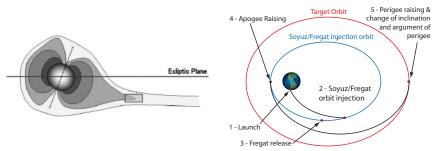
- Summary Data
 - 100% recovered
 - \sim 10% telemetry
 - Comprehensive; science quality
- Full-resolution Data
 - Taken continuously
 - Stored onboard

S/C 1	$t_1 1$	t ₁ 2	t ₁ 3	t14	t ₁ 5	t ₁ 6	t ₁ 7	t ₁ 8	 t ₁ (i-1) t ₁ i
S/C 2	t-1	t ₂ 2	t.3	t24	t ₂ 5	t26	t ₂ 7	t28	 t ₂ (i-1) t ₂ i
	2	-	-	2	-	-	-	-	2() 2
S/C 3	t ₃ 1	t ₃ 2	t ₃ 3	t ₃ 4	t ₃ 5	t ₃ 6	t ₃ 7	t ₃ 8	 t ₃ (i-1) t ₃ i
S/C 4	t ₄ 1	t ₄ 2	t ₄ 3	t ₄ 4	t ₄ 5	t46	t ₄ 7	t ₄ 8	 t4(i-1) t4i
							_		
S/C 5	t51	t ₅ 2	t ₅ 3	t ₅ 4	t ₅ 5	t56	t ₅ 7	t ₅ 8	 t ₅ (i-1) t ₅ i
S/C 6	t ₆ 1	t ₆ 2	t ₆ 3	t ₆ 4	t ₆ 5	t ₆ 6	t ₆ 7	t ₆ 8	 t ₆ (i-1) t ₆ i
a (a =									
S/C 7	t ₇ 1	t ₇ 2	t ₇ 3	t ₇ 4	t ₇ 5	t ₇ 6	t ₇ 7	t ₇ 8	 t7(i-1) t7i

Science Data Selection

- Summary Data
 - 100% recovered
 - \sim 10% telemetry
 - Comprehensive; science quality
- Full-resolution Data
 - Taken continuously
 - Stored onboard
 - Science Event List selects subsets
- Science Event List part of operations

S/C 1 t ₁ 1	t ₁ 2 t ₁ 3	14	t ₁ 5	t ₁ 6	t ₁ 7	t ₁ 8		t ₁ (i-1)	t ₁ i
S/C 2 t ₂ 1	t ₂ 2 t ₂ 3	24	t ₂ 5	t ₂ 6	t ₂ 7	t ₂ 8		t ₂ (i-1)	t ₂ i
S/C 3 t ₃ 1	t ₃ 2 t ₃ 3	34	t ₃ 5	t36	t₃7	t ₃ 8		t ₃ (i-1)	t3i
S/C 4 t ₄ 1	t ₄ 2 t ₄ 3	44	t ₄ 5	t46	t₄7	t ₄ 8		t ₄ (i-1)	t4i
S/C 5 t ₅ 1	t ₅ 2 t ₅ 3	54	t ₅ 5	t56	t₅7	t ₅ 8		t ₅ (i-1)	t5i
S/C 6 t ₆ 1	t ₆ 2 t ₆ 3	64	t ₆ 5	t ₆ 6	t ₆ 7	t ₆ 8		t ₆ (i-1)	t ₆ i
S/C 7 t ₇ 1	t ₇ 2 t ₇ 3	:74	t ₇ 5	t ₇ 6	t ₇ 7	t ₇ 8		t7(i-1)	t7i
FR Data to be telemetred									


Mission Overview: Launch & Insertion

- · 3 year mission, 7 Spacecraft & 1 transfer stage
- Single Soyuz-Fregat launch from Kourou, October 2017
- Launch mass: 3570 3703 kg
- Insertion into:

200 km x 5.3 (5.8) R_E orbit

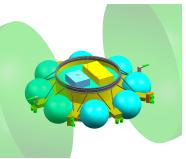
1630 (1420) m/s

- Transfer by chemical propulsion module (optional lunar resonance)
- Transfer ΔV :
- Target Orbit: 10 x 25 R_E, $i = 14^{\circ}$, $\omega = 205^{\circ}$, T = 4.3 days

Mission Overview: Configuration & Environment

- Configuration ΔV : 14 200 m/s
- Scales: electron: 2-100 km, ion: 50-2000 km, fluid: 3000-15000 km
- · Electrical power per spacecraft:
- · Mass per spacecraft:
- Radiation Environment:

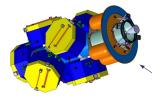

160 kg to 210 kg (dry)


220 – 240 W

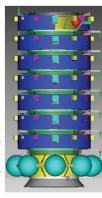
33 krad (1.5mm), 9 krad (4 mm)

(54 krad (1.5 mm), 11 krad (4 mm))

Operation done by ESOC and ESAC

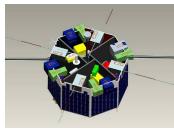


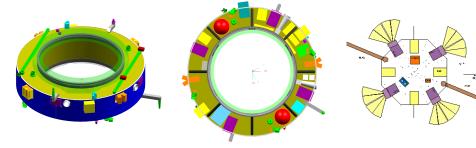
Mission Concept


- Propulsion module (PM) performs insertion of the stack
 - PM brings stack into 10 by 25 Re orbit, then discarded
 - PM controlled by spacecraft on top of it
 - Analysis of collision between PM and spacecraft: no risk
- · 7 identical spacecraft
- · Inter-spacecraft ranging on electron scale spacecraft
- · Each spacecraft has a direct link with Earth
- 15 rpm spinning spacecraft (after separation)
- · Simplified propulsion system for science spacecraft

S/C in control of PM

Propulsion module




Dimension of spacecraft driven by power demand

Dimension of spacecraft driven by structural stiffness

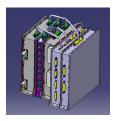
Model Payload

- 5 different payload configurations
- P/L Mass range:
- P/L Power range:
- Average data rate:
- Total 93 sub-units
- · Up to 1 Tbit mass memory per spacecraft
- · Spacecraft configuration allows variation on P/L

15 – 33 kg

15 - 60 W

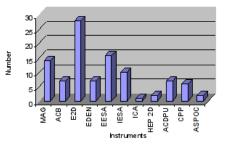
800 kbps



Cross-Scale

Development Approach

- A: 2 x Proto-Flight Model + 5 recurring flight models
- B: EQM + 7 recurring flight models
- · Parallel AIV for the flight model via island approach
- · Requires seamless arrival of instruments in time
- Schedule for 2017 launch is challenging
- Minimal technology upgrade activities required
 - 15 rpm star mapper
 - Low gain antenna improvement
 - Inter-spacecraft link adaptation
 - Mass memory optimisation

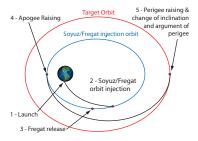


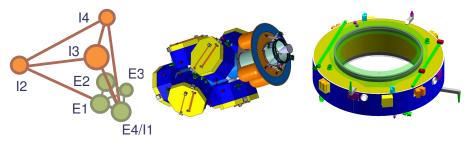
Cross-Scale

Most Critical Items

Feasible mission concept with following critical items:

- Cost at Completion
- Schedule (7+1 spacecraft need to be made) for launch 2017
- · Number of Instrument sub-units (93 FM) & availability in time
- Number of Spacecraft and resulting AIT/AIV
- EMC requirements driving AIV/AIT

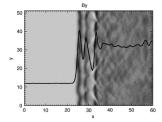




Technology Summary

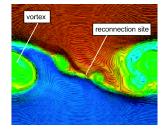
Feasible mission concept

- Good industrial solutions
- Strong heritage for instruments & space sector
- Clearly-identified but manageable risks

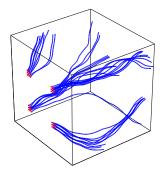


Cross-Scale

Cross-Scale addresses fundamental questions about how solar system astrophysical, and laboratory plasmas work by *simultaneously* measuring the coupling between electron, ion, and fluid scales.

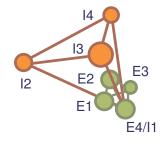

· How do shocks accelerate particles?

Cross-Scale addresses fundamental questions about how solar system astrophysical, and laboratory plasmas work by *simultaneously* measuring the coupling between electron, ion, and fluid scales.


- · How do shocks accelerate particles?
- How does reconnection convert magnetic energy?

Cross-Scale addresses fundamental questions about how solar system astrophysical, and laboratory plasmas work by *simultaneously* measuring the coupling between electron, ion, and fluid scales.

- · How do shocks accelerate particles?
- How does reconnection convert magnetic energy?
- How does turbulence control transport in plasmas?



Cross-Scale addresses fundamental questions about how solar system astrophysical, and laboratory plasmas work by *simultaneously* measuring the coupling between electron, ion, and fluid scales.

- · How do shocks accelerate particles?
- How does reconnection convert magnetic energy?
- How does turbulence control transport in plasmas?

The mission

- · Mature concept within ESA and member states
- Strong synergies with JAXA/SCOPE including CSA

