# Development of atomic clocks and frequency transfer techniques at three laboratories around Tokyo area

Yuko Hanado<sup>(1)</sup>, Feng-Lei Hong<sup>(2)</sup>, Hidetoshi Katori<sup>(3)</sup>

- (1) National Institute of Information and Communications Technology (NICT)
- (2) National Metrology Institute of Japan (NMIJ)
- (3) University of Tokyo and Riken









- Background
- Report from
  - University of Tokyo and RIKEN
  - o NMIJ
  - o NICT
- Summary of activities in 4 institutes
- Summary

# Background

# Tokyo area = One of active areas on R&D of atomic clocks



- Background
- Report from
  - University of Tokyo and RIKEN
  - o NMIJ
  - o NICT
- Summary of activities in 4 institutes
- Summary

# Optical Lattice Clocks, Cavities, and Fiber Link under development at UT and Riken

No Dead time operation:

highly stable clock utilizing stable L.O. (20K silicon cavity)



- Background
- Report from
  - University of Tokyo and RIKEN
  - o NMIJ
  - o NICT
- Summary of activities in 4 institutes
- Summary

### **Optical lattice clocks at NMIJ**

#### Yb optical lattice clock



#### Sr-Yb dual optical lattice clock



 $^{1}S_{0}(F = 1/2)$ - $^{3}P_{0}(F = 1/2)$  transition in  $^{171}$ Yb f = 518 295 836 590 863.1(2.0) Hz (Fractional uncertainty  $3.9 \times 10^{-15}$ )

M. Yasuda et al., Appl. Phys. Express vol. 5, 102401, Sep. 2012.

Secondary representations of the second (Oct., 2012)

- 1) Contribution to the Sr lattice clock community;
- 2) As a second optical clock to be used for the evaluation of the Yb lattice clock;
- Measurement of the Sr/Yb frequency ratio with an uncertainty beyond the Cs limit;
- Contribution to the experimental demonstration of alpha variation.

### **Atomic fountains at NMIJ**



### **Calibration of TAI using NMIJ-F1**

- 25 reports to BIPM in recent 4 years until Feb.2011.
- The operation has stopped since March 2011 (Earthquake).
- We will need some time for recovery.



NMIJ-F2 (under construction)

### **UTC(NMIJ)** generation system and time transfer link at NMIJ





Temperature controlled chambers for 5071A

CH1-75A

Earth station configuration

- UTC(NMIJ) is generated by reference signal form one H-maser steered by an AOG.
- Clocks at NMIJ
  - 4 H-masers
    - 1 RH401A made by Anritsu
    - 1 SD1T01A made by Anritu
    - 1 CH1-75A made by KVARZ
    - 1 VCH-1003M made by VREMYA
  - 3-5 Cs clocks
    - 5071A with high performance beam tube
- Time Transfer Link
  - UTC PPP (GPS carrier phase) using Z12-T: main time transfer tool
  - TWSTFT : backup tool

- Background
- Report from
  - University of Tokyo and RIKEN
  - o NMIJ
  - o NICT
- Summary of activities in 4 institutes
- Summary

### **Atomic clocks at NICT**

#### 1D optical lattice clock with spin-polarized <sup>87</sup>Sr atoms

Systematic uncertainty: 5e-16

Contribution to secondary

- Direct frequency comparison
- Operating Freq. ref. at NICT

<sup>40</sup>Ca<sup>+</sup> single-ion optical clock

Systematic uncertainty: 2e-15

**Contribution to CIPM Recommend** 

Comparison with WIPM in China by GPS link

Ref. for In+-Ca+ clock development



**Absolute frequency in five groups** 



**Direct comparison** 



**Absolute frequency measured at NICT** 



### Frequency comparison between Ca+ ion clock and Sr lattice clock





- $\circ$   $v_{Ca}/v_{Sr}$ = 0.957 631 202 358 049 9 (2 3)
- Fractional uncertainty 2.3e-15
- Evaluation Ca<sup>+</sup> ion clock using Sr lattice clock as a reference

### <sup>115</sup>In<sup>+</sup> single-ion optical clock

#### Target:

- Accuracy in the order of 10<sup>-18</sup>New approaches:
- Sympathetic cooling with Ca<sup>+</sup>
- Fast state detection
  - Simplified quantum logic
  - Direct excitation of VUV transition (159nm)
- Hybrid clock with the Sr optical lattice clock





Method for preparing the In+-Ca+ ion chain in a linear trap has been established (Appl. Phys. B, 107,965(2012)

159nm 170MHz

1S<sub>0</sub>

clock

236.5nm 0.8Hz

The clock laser system with Hz-order linewidth is ready



 The first clock operation is planned in FY2013 with an initial accuracy of 10<sup>-14</sup>

#### Cs fountains as PFS

#### NICT-CsF1







NICT-CsF2





- 12 accuracy evaluation campaigns have been reported to BIPM since 2006.
- Cs-F2 based on optical molasses is under development.



#### Optical fiber link between NICT and UT



- \* All optical link system achieved <u>2e-15 @ 1 s</u> and <u>7e-17 @ 1000 s.</u>
- \* 2 remote Sr lattice clocks <u>agreed in 10<sup>-16</sup> level</u>.
- \* Frequency shift of 2.6 Hz attributed in elevation difference of 56 m was detected after 10 s average.



#### Carrier phase TWSTFT



- \* Operational carrier phase TWSTFT via a geostationary satellite was demonstrated in <u>150-km baseline</u> for the first time.
- \* Measurement precision of 0.4 ps was achieved. (1000 times better than conventional TWSTFT.)

\* Common-clock measurem

2e-13@1s 1e-15@4000s are achieved.

\* This is comparable to inter-continental ACES MWL.



### **SLR station in NICT**

- Koganei (7308): Optical Communication Ground Station since 1990.
  - ✓ Telescope Aperture: 1.5 m
  - ✓ Laser :532 nm 50 mJ 20 Hz, 50ps pulse width
  - ✓ UTC(NICT) signal has been provided through optical fibers since 2009.
- Koganei (7308) joined the T2L2 campaign in October 2009.
- The laser will be renewed in 2014.
- Operation continuity of the telescope 10<sup>-10</sup> is under discussion.





Frequency transfer stability with DORIS

### Weather condition in Tokyo



| Month | Ratio [%] |
|-------|-----------|
| 1     | 74        |
| 2     | 68        |
| 3     | 55        |
| 4     | 57        |
| 5     | 50        |
| 6     | 36        |
| 7     | 39        |
| 8     | 53        |
| 9     | 39        |
| 10    | 48        |
| 11    | 58        |
| 12    | 73        |
| Year  | 54        |

- •Ratio of number of days for actual sunshine duration > 40 %.
- ·Reference: Japan Meteorological Agency,

http://www.data.jma.go.jp/obd/stats/etrn/view/nml\_sfc\_ym.php?prec\_no=44&block\_no=47662&year=&month=&day=&view=a4

- Background
- Report from
  - University of Tokyo and RIKEN
  - o NMIJ
  - o NICT
- Summary of activities in 4 institutes
- Summary

# Summary of atomic clocks

| Site       | Atomic clocks including under development                                                   |
|------------|---------------------------------------------------------------------------------------------|
| NMIJ       | Yb lattice clock<br>Sr-Yb lattice clock<br>NMIJ-F1<br>NMIJ-F2                               |
| NICT       | 87Sr lattice clock Ca+ single ion clock In+ single ion clock NICT-CsF1 NICT-CsF2            |
| UT & RIKEN | 3 <sup>87</sup> Sr lattice clocks (1 in UT, 2 in RIKEN)<br>2 Hg lattice clocks (2 in RIKEN) |
| Total      | 4 Cs fountains 2 single ion clocks 8 optical lattice clocks                                 |

# Summary of frequency links



4 institutes can be linked by fiber links or satellite links.

•

### Summary

- Various optical clocks are being developed at 4 institutes (NMIJ, NICT, Univ. Tokyo and Riken) around Tokyo area.
- These institutes can be linked by optical fiber or satellites, and collaborate together to join ACES (If its ground terminal comes to Japan).