Landing Targets and Technical Subjects for SELENE-2

Kohtaro Matsumoto, Tatsuaki Hashimoto, Takeshi Hoshino, Sachiko Wakabayashi, Takahide Mizuno, Shujiro Sawai, and Jun'ichiro Kawaguchi

JAXA / JSPEC
JAXA’s Lunar Exploration

Hiten & Hagoromo 1990

SELENE ~ 2007.9

SELENE-B

JAXA 2025

SELENE-2 (Early 2010)

SAC-Lunar Explo. WG

NASA VSE

SELENE-X

Int’ Coop.

Lunar-A

Human Lunar Explo.

SELENE-2

ILEWG
Japanese Lander Concepts: SELENE-B to SELENE-2

• SELENE-B
 – Mission
 • Lunar science
 – Landing
 • Central peak of a large crater

• SELENE-2
 – Mission
 • Lunar science
 • Technology development
 • International cooperation
 – Landing:
 • Primary: ELR (Eternal Light Region) of polar region
 • Sub: Equatorial, or high latitudes

Copernicus
Central Peak

South Pole & Shackleton Crator
(D.B.J.Bussey et al)
Characteristics of new Landing Target
-- Quasi-ELR(eternal light region) --

• for long term lunar activity
 – Long term scientific observation
 – Seismology, libration, . . .
 – Future lunar activities
 – Outpost, Observatory

• Science
 – By : Long Term Seismometric Observation
 – of : Geology & Chronology, SPA
 – : Origin of Water/Ice
 – from : Astronomy

• Utilization
 – PSR is very close for water/ice ISRU
Landing Targets for SELENE-2

<table>
<thead>
<tr>
<th></th>
<th>Polar Region (ELR)</th>
<th>Mid Lattice (Crater Central Hill)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech. merits</td>
<td>*Long term mission by solar power</td>
<td>*Direct link from ground</td>
</tr>
<tr>
<td></td>
<td>*Low temperature change</td>
<td>*Optical image role for Hazard Avoidance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Hot temperature during day time</td>
</tr>
<tr>
<td>Science</td>
<td>*Water/Ice possibility at PSR</td>
<td>*Material from lunar inside</td>
</tr>
<tr>
<td></td>
<td>*Samples from SPA</td>
<td>*SPA and far side</td>
</tr>
<tr>
<td>Social</td>
<td>*Inter. human lunar exploration & outpost</td>
<td>*Science driven</td>
</tr>
<tr>
<td>Subjects to be solved</td>
<td>*Narrow Landing site</td>
<td>*Night survival for long Moon nights</td>
</tr>
<tr>
<td></td>
<td>*Low sun angle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Difficulty of direct comm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>→Data relay Sat.</td>
<td></td>
</tr>
</tbody>
</table>
ELR -- what ELR is, for technology?

- Mountain top
 - Pin-point & Safe landing
 - Narrow(<1km) & Long(3,4km)
 - Rough terrain mobility
 - Slope with 15° Average
- Very low temperature thermal control
 - 100K (estimated)
- Long day time
- Low & sun angle (< 5°)

- Safe & precise landing
- Exploration around lander by rover
 - Slope Climbing
 - Survival in very low temperature
- Utilization of longer day time at ELR
 - Long term activities at landing site

2007.10.23
For Safe & precise landing

Safe
- Autonomous Obstacle Avoidance
 - Obstacle identification / recognition
 - Active image recognition
 » Rader altimeter & velocity meter
 » LRF
 » Flash, Star shell
 - Supervised landing control from ground

Precise — Navigation & Guidance
- Advanced N&G sensors
 - Image tracking
 - Altitude trace tracking
- Pin Point Control
 - Image tracking control
 - Sensors: Radio A&V
Simulated Image of Polar region

Effect of Rocks
*Surveyor 7 level rock distribution
*Sun angle : 1.5 deg
→ Shadow : 91.8%

Active sensors
Radar, LRF, Flash, Star shell
For Safe & precise landing
-- Development of Landing RADAR

Radar Type	Pulse radar
Function	Altimeter
Velocitymeter	
(Doppler RADAR)	

Range | Altitude 30 - 10000m
| Velocity 0 - 50m/s

Accuracy | 5% for Altimeter
| 5% for Velocitymeter

Data rate | 5Hz

Now ready to move on to EM
For Safe & precise landing
-- Precise vertical descent control

Vertical descent scenario

- Initial error: 500m
- Rough AHA: 150m
- Precise AHA: 40m
- Constant V: 10m
- Free Fall: 2m
- Lunar Surface

Simulation
Improved vertical descent control
Results: $< \pm 4m \; 3 \sigma$

- Hovering: 10 sec at 40m altitude
- N&V sensor
 - Image Tracking
 - Touch down sensor
Rover: Exploration around lander

- **ELR area characteristic**
 - Rough terrain like mountain top
 - Surface: covered by thick regolith
 - Slope: Average 15°
 - Rock: Ejector zone of a Crater
 - Surveyer-7 level as worst case

- **Technical subjects of rover**
 - Running mechanism
 - Crawler
 - Low pressure ring tire
 - Supervised vs Autonomy
 - Little comm. time delay
 - Technology & future planet explo.
 - Moon night survival
Rover: Exploration around lander

-- Running Mechanism--

- Crawler type rover and Wheel type rover BBM is under developing

Crawler for
*next exploration
*future outpost

![Graphs showing Hill Climbing and Power Requirement for Crawler and Wheel types with load and slope inclination data.](image)
Explo

• Before landing
 – Penetrator
 • High penetrating G (>10000G)
 – Capsule with Air Bag
 • Single point of PSR surface

• After landing
 – Hopping exploration
 • Amount of fuel
 – Rover exploration in PSR
 • Survivability in PSR
 – RSIM observation from Rover on the end of Rim
 • RSIM sensor
Solar Tower: Utilization of longer day time at ELR

- **Feasibility of Solar Tower Concept**
 - Tower Height
 - Against Ground relief
 - (Against rock obstacles)

Tower Height

\[\text{Height} = L \times \tan 3.5\text{deg} \]

- Max 3.5deg for 88 deg latitude
- Possible Objects: 15 to 30m Tower Height
- Landing Point: L: Width of ELR (250m to 500m)
Power system: Utilization of longer day time at ELR

Electrical Specification

<table>
<thead>
<tr>
<th></th>
<th>Power Req. kw/h</th>
<th>Total Power for a Night kw/h</th>
<th>Fuel Cell (kg)</th>
<th>RTG (kg)</th>
<th>Nuclear (kg)</th>
<th>Solar Paddle on Lunar Pole (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Specification</td>
<td></td>
<td>400 WH/kg</td>
<td></td>
<td></td>
<td></td>
<td>11w/kg ~ 150w/kg</td>
</tr>
<tr>
<td>Unmanned Explorer (No activities in Night)</td>
<td>0.1</td>
<td>36</td>
<td>200</td>
<td>20</td>
<td>_</td>
<td>10</td>
</tr>
<tr>
<td>Unmanned Explorer (Active in Night)</td>
<td>0.5</td>
<td>180</td>
<td>400</td>
<td>100</td>
<td>_</td>
<td>50</td>
</tr>
<tr>
<td>Manned Outpost (JEM Size)</td>
<td>21</td>
<td>7560</td>
<td>(18900)</td>
<td>(4200)</td>
<td>1000</td>
<td>280 ~ 1900</td>
</tr>
<tr>
<td>Manned Base (ISS Level)</td>
<td>75</td>
<td>27000</td>
<td>(67500)</td>
<td>(15000)</td>
<td>1000</td>
<td>1000 ~ 7000</td>
</tr>
</tbody>
</table>

Promissing Solar Paddle Tower
-- Major technological subjects to be solved – as Concluding Remarks

• **Safe & Precise**
 – Active sensors for Obstacle recognition
 – Reliable N&G algorithm/software

• **Rover**
 – Night survival without RTG
 – Activities under very low temperature

• **Night survival**
 – Parts development & verification for –200°C to –240°C
 – Effective power resource for lunar exploration
Rover: Exploration around Lander
-- Survivability in PSR --

- **PSR is close to landing zone**
 - Long traverse from lander to PSR
 - > 10km
 - Steep slope from crater rim to floor > 30°
 - Survivability of Small rover in PSR
 - Thermal Control in ELR & PSR
 - 2 to 5 hours survival in PSR
 - with 40W continuous power consumption