

Cosmic Vision 2015-2025 Technology Plan

Industry day, Estec 21 November 2008

Agenda

1- Status of Cosmic Vision Plan	10:00 - 10:40
General Status - F.Safa	
2- Overview of M-Class missions	10:40 – 11:30
Solar Orbiter – Ph.Kletzkine	
Cross-Scale, Marco-Polo – P.Falkner	
Plato, Euclid – N. Rando	
3- Overview of L-Class missions	11:30 – 12:10
IXO mission – N.Rando	
LISA – A.Gianolio	
Outer Planet Mission – P.Falkner	
4- Technology Development Plan Implementation	12:10 – 12:30
Implementation procedures – M.Bavdaz	
Implementation schedule – M.Bavdaz	

General Status

Mission Assessment Phase

Phase 0/A

First slice of Cosmic Vision Plan: Six M-Class and three L-Class missions are being assessed

Mission Down-selection Mission Launch selection & Payload AO adoption **Definition Phase Implementation Phase Assessment Phase** ≥ 2 years ≥ 2 years ~ 5-6 vears one mission two missions n missions Assessment studies Design consolidation Development & pre-developments

And Payload activities

Spacecraft

ESA /
Member States
agreements

LOE MLA

Phase A/B1

more on cosmic vision: http://sci.esa.int/science-e/www/area/index.cfm?fareaid=100

Directorate of Science and Robotic Exploration

Phase B2/C/D

M class missions

- Six missions studied
 - ✓ Five from CV 2015-2025 first Call: Euclid, Plato, SPICA, Marco-Polo & Cross-Scale
 - ✓ Solar Orbiter now included in CV slice 1
- Current progress is compatible with a M-mission down-selection end 2009/early 2010 and a launch in 2017/2018
 - ✓ Phase 0 completed for all M missions. All industrial studies completed in Sept 09,
 - ✓ Technology Plan (TDP) in place for ESA and in progress for Member States on instrumentation
 - ✓ Technical readiness status vs 2017-2018 launch: should be achievable, based on Phase 0 ESA studies
- Budget compatibility: The overall CV budget envelope (~ 900 ME) can reasonably accommodate two (or more) M missions
 - ✓ Will be further consolidated by the end of the Assessment Phase, following consolidation of Member State contribution on the Payload

M missions: Short term schedule

Industrial studies

- ✓ Funded by ESA General Study Programme (GSP)
- ✓ All studies are organised in three phases
 - Design trade-offs & baseline selection (Phase 1)
 - Detailed design (Phase 2)
 - Programmatic (Phase 3, 1 month)
- ✓ Mid-term (baseline selection):
 Dec 08-Jan 09
- ✓ Study completion: Sept 2009

National Payload Studies

- ✓ Instrument national studies are made in parallel with industrial studies
- ✓ Interface with the Study Science Team, Industry and Instrument teams ensured by ESA

L class missions

- Three L-missions are being studied: Outer Planet mission (Laplace or Tandem), IXO and LISA
 - ✓ Phase 0 completed for all L missions,
 - ✓ Technology Plan (TDP) in place for ESA and in progress for Member States on instrumentation
 - ✓ Slower progress than for M missions, due to international context, technical complexity and "primary" between Laplace/Tandem: Industrial studies not yet started, call for Instrumentation studies not yet issued.
- Technical readiness status vs 2018 launch: Not demonstrated
 - ✓ Poor for Outer Planet missions and IXO, based on Phase 0 ESA studies and TDP elaboration.
 - ✓ Subject to LISA Pathfinder success in-orbit and to satisfactory technology development progress for LISA.
- Budget compatibility: None of the missions can be afforded within the overall CV budget envelope, without international collaboration.

L missions: International collaboration scheme and constraints

- The three L missions are today foreseen in collaboration with the United States, and in addition for some with Japan
 - ✓ Was the case for LISA: ESA/NASA mission.
 - ✓ Was the case for Outer Planet Missions
 - ✓ Recent evolution for XEUS, re-named IXO (International X-ray Observatory)
 - ✓ But NASA budget constraints are not compatible with L-mission launch before 2020
- Target launch date for L1 mission is now 2020
 - ✓ Realistic schedule vs budget and technology preparation
 - ✓ The Outer Planet down-selection (Jupiter or Saturn) is confirmed for beginning 2009 and will be jointly done by ESA/NASA

L missions: Short term schedule

IXO Phase 0 (ESA study): Oct-Nov 08

Laplace/Tandem down-selection: Jan 09

IXO and Outer Planet studies (all dates preliminary)

✓ Invitation to Tender: April-May 2009

✓ Industrial Studies: July 2009-Dec 2010

✓ Call for Instrument studies: Feb-March 09

L1 mission down-selection: beginning 2011(tbc)

Cosmic Vision timeline summary

Overview of M-class missions

Current Industrial Work

- Preliminary Definition Phase B1 initiated in March 2008.
- Astrium Ltd, with Astrium GmbH and Alenia.
- Design Definition of Spacecraft, Heat Shield, Instrument Accommodation, Definition of Technology Development Activities.
- Programmatics, BepiColombo equipment re-use, Equipment Requests for Information, Schedule, Costing.
- Preliminary Requirements Review scheduled in Dec. 2008.
- System Requirements Review scheduled in Fall 2009.
- Slightly re-directed to fit Cosmic Vision milestones: down-selection end 2009, Phase B2/C/D start in January 2012, target launch in January 2017.

Spacecraft Baseline

Spacecraft Critical Items

- SOLAR GENERATOR
 - ✓ Hot case sized by temperature and solar flux
 - ✓ Cold case sized by far-sun power demand
 => New, dual-side design needed
 Heritage from BepiColombo? (Array / PVA / Cell / diodes etc)
- HIGH GAIN ANTENNA
 - ✓ Inherited from BepiColombo but must be adapted (Pointing Mechanism, coating, mounting frame), higher mass than originally budgeted
 - ✓ Crucial for critical data downlink. MUST BE FOLDED REPEATEDLY.
- HEAT SHIELD with its BAFFLES, DOORS, MECHANISMS
 - ✓ Openings, interfaces, diaphragms, materials Already well underway
- AOCS SENSORS and FDIR ITEMS
 - ✓ Sun Sensors, adapted Star Trackers, specific FDIR
- THERMAL CONTROL MATERIALS
 - ✓ Heritage from BepiColombo? (HTMLI / Heat Pipes etc)
- HIGH SOLAR FLUX TEST FACILITY
 - ✓ Moderate size, to check filters, materials, interfaces and local effects

Payload Critical Items

- HEAT REJECTING ENTRANCE WINDOW
 - ✓ Development already well underway (ESA CPT)
 - ✓ To be continued: IR coating cycle life improvement, mounting frame design, qualification testing higher mass than originally budgeted
 - ✓ Crucial for thermal control of instrument and whole spacecraft
- DETECTORS
 - ✓ Some development underway (commercial visible-light APS under ESA CTP; EUV detectors under ESA TRP)
- POLARIZERS
 - ✓ Space application of LCVRs, getting going
- OTHER ITEMS
 - ✓ Very instrument and design specific (e.g. specific ASIC), not underway yet, expected to be covered by Instrument teams

Science

 To study plasma processes (turbulence, reconnection, shocks) on multiple scales simultaneously

Space Segment

- 7 S/C in nested tetrahedra, optimum 12 S/C on 3 scales:
 (1) Electron scale (2-100km), (2) Ion scale (50-2.000km), (3) Fluid scale (3.000-15.000km)
- Launch on Soyouz-2b (single launch)
- Slightly adopted payload per scale (~25 kg per S/C)
- Spinning S/C with ~15 rpm
- Orbit: 10 R_E x 25 R_E (optimum science, low radiation, no debris problem) constellation passes through bow shock, magnetotail and magnetopause
- Orbital period: 104 h, Orbit Inclination: 14 degree, multiple visit of "Tailbox"
- S/C design identical for all scales to minimise non-recurring costs
- Main trade-off: dispenser / stacked configuration

Payload: provided by Member States

Trade: Dispenser or Stacked configuration

Directorate of Science and Robotic Exploration

Cross Scale (M-Class)

Technology

No major critical technology development required

Assessment Status

- ESA Phase 0 study completed.
- Industrial Studies 2 parallel contracts running (TAS-F and Astrium-UK, Final Review Jun. 2009)
- In parallel: National funded Instrument Studies (10) by instrument proposers

International Collaboration

JAXA (Scope), NASA and CSA

Wire-boom deployment unit

S/C deployment simulation (dispenser based)

Marco Polo (M-class)

Science

~30 gram Sample Return from primitive Asteroid (C or D-type)
 e.g.: UQ 1989 (C-type), ~760m diameter, 0.67 AU x 1.16 AU

Space Segment

- Goal: Minimum possible space segment
- Launch with Soyuz -1B (Aug. 2017)
- Chemical Transfer (typ. 3.2 year), $\Delta v = 482$ m/s, Earth-Venus GA-transfer
- Arrival: Dec. 2020 1.6 year stay time (observation, sampling)
- Landing on target at full daylight
- Return: Nov. 2023, Δv = 529 m/s, Venus GA
- Entry: v = 11.8 km/s, 11 MW/m2, ~76 kg entry capsule (ERG)
- 3 axis stabilized S/C, mass = 1.191 kg (wet)
- Sampling based on coring principle (some ExoMars heritage)

Robotic arm for sampling

Directorate of Science and Robotic Exploration

Marco Polo (M-class)

Technology

- Guidance and Navigation at small body, including GNC for safe landing
- Landing and operations on surface at low gravity
- Sampling mechanism and transfer system
- Re-entry up to 12.5 km/s

Status

- ESA Phase 0 study completed.
- Industrial Studies 3 parallel contracts running (Astrium UK, OHB, TAS-I, Final Review ~ Sep. 2009)
- National funded P/L studies in parallel (23 proposals received)

International collaboration

- Under elaboration, could be with JAXA,
- In case of JAXA lead: More challenging target (e.g.2001 SG286/Wilson Harrington)

Industrial system studies:

✓ Two parallel contracts, Astrium-F & TAS-I

'Staring mode' baseline from ESA study:

- ✓ Two fields of view explored (e.g. 3 yrs + 2 yrs)
- ✓ SF2-1b launch, direct transfer to L2
- ✓ 28 identical telescopes
- ✓ Total collecting area ~0.3 m², FOV > 550 deg²
- √ 4 CCD's / focal plane (compatible with realistic detector procurement constraints), 3.5k x 3.5k, 18 um pixel
- ✓ Early procurement of CCD's required in 2010

National instrument studies:

- ✓ Single consortium in place
- ✓ Work on instrument design, performance analyses and on board data reduction

Directorate of Science and Robotic Exploration

Relevant technology activities in the current plan

- ✓ High processing power DPU (onboard processing of science data)
- ✓ Optimised high speed, high dynamic range CCD.
- ✓ High speed, 16 bit CCD signal processor / ADC.

Directorate of Science and Robotic Exploration

Industrial system studies:

- ✓ Two parallel contracts, Astrium GmbH & TAS-I.
- ✓ Feature 1.2 m telescope.
- ✓ Focal plane instruments:
 - VIS path with large focal plane for weak lensing.
 - NIR path for accurate wide-band photometry.
 - NIR path with 3 instruments for high resolution spectroscopy.

National instrument studies - Two consortia are in place:

- ✓ Euclid Imaging, on the VIS imaging and NIR Photometer channels.
- ✓ Euclid NIS, on NIR spectrometer channel.

Relevant technology activities in T.D.P.

- ✓ K-band down-link capability from L2 (space and ground segment).
- ✓ CCD radiation characterisation (of relevance to VIS).
- ✓ Digital Micro-mirror Device for multi-object spectrometers (of relevance to NIS, evaluation of commercial component ongoing).
- ✓ NIR/SWIR large format array detector and associated ASIC read-out.

- JAXA led mission. ESA provision: 3.5 m telescope + SAFARI instrument
 - ✓ SPICA in "pre-project phase"in JAXA, 2 years Phase A study and review milestones in line with CV15-25 process.

- ✓ Two parallel industrial contracts: TAS-F & Astrium-F.
- ✓ Baseline design from ESA study: Ritchey-Chrétien design, ~5K operations, 700 kg, re-focussing mechanism at M2, ~ 5 yrs development schedule.
- ✓ Coronograph related requirements treated as delta to baseline telescope design.

- ✓ Four candidates for detector technology, downselection expected by 2nd half 2009.
- ✓ Interferometer mechanism to be traded-off.
- ✓ Instrument hybrid sorption/ADR cooler.
- ✓ Heat load budget to be consolidated with JAXA.

Directorate of Science and Robotic Exploration

Relevant technology activities in T.D.P.

- ✓ Focusing mechanism for secondary mirror (3 DOF, operating at 5K).
- ✓ Light-weight mirror demonstrator breadboard (addressing specific critical areas).
- ✓ Telescope Assembly verification & Testing: demonstration of critical areas (e.g. verification of optical performance at representative temperature).

Overview of L-class Missions

- IXO (International X-ray Observatory) replaces
 XEUS (ESA/JAXA) and Con-X (US)
 - ✓ XEUS ESA/JAXA Formation Flying internal study completed
 - ✓ Mission not compatible with available CV budget
- IXO baseline for ESA/NASA/JAXA joint study:
 - ✓ Single large X-ray mirror assembly, HEW 5 arcsec
 - ✓ Deployable bench for reaching ~20-25 m focal length
 - ✓ Main instruments: Wide field imager, high resolution non-dispersive
 - ✓ spectrometer and dispersive spectrometer using X-ray gratings
 - ✓ Compatibility with Ariane V and Atlas V launchers
- IXO internal study is just completed, with NASA and JAXA participation
 - ✓ Industrial studies should start by mid 2009
- IXO will be the input to both US decadal survey and CV L1 selection
- ESA/NASA/JAXA respective contributions and roles not yet defined

Relevant technology activities in T.D.P.

- ✓ Low mass X-ray optics (mission enabling): Si pore optics development and validation, alternative technology using slumped glass
- ✓ Cryogenic coolers (required by Narrow Field Instrument)

Technology Development Plan will be updated according to IXO re-direction and results of ongoing study

- ✓ Deployable structure required to increase focal length (extension mechanisms, deployable shroud).
- ✓ Instrument exchange platform (mechanism).

LISA mission

- ✓ ESA/NASA collaboration
- Measurement of gravitational wave using laser interferometry
- ✓ Constellation of 3 spacecrafts separated by 5 million km

Critical areas

- √ 6 drag-free test masses
- ✓ micropropulsion system
- ✓ interferometrically measuring variations in distance between couples of test masses at the picometre level
- ✓ LISA Pathfinder technology validation mission to be launched in 2010/11

Technology required by LISA

- Low-noise, high stability mechanisms (point-ahead and optical articulation)
- Highly stable materials for telescope assembly (CFRP, zerodur, inserts ...)
- Low-noise electronic components for GRS front-end electronics (voltage references ..)
- Light sources for charge management discharge (LEDs, laser diodes ...)
- Metrology system
- High-power laser system (1-2 W EOL, redundant)
- Outgassing & contamination issues
- Micropropulsion (lifetime characterization)

LISA technology

- The majority of LISA technology will be flight-validated by LISA Pathfinder (LPF)
- Main differences w.r.t. LPF:
 - ✓ lower operative frequency band (10⁻³ to 10⁻⁴ Hz)
 - ✓ Interferometry (polarizing vs. non polarizing)
 - ✓ Laser output power
 - ✓ Material stability (CFRP, ZERODUR ...)
- Workshop on technology will be organized in Jan/Feb 2009 for consolidating Member State involvement
- CTP activities will be issued in 2008/2009

Laplace - Europa Jupiter System Mission (EJSM)

ESA/NASA Outer Planet candidate mission

- ESA: Jupiter Ganymede Orbiter (JGO), Jupiter System Science (atmosphere, magnetosphere) with focus on Callisto and Ganymede
- NASA: Jupiter Europa Orbiter (JEO). Jupiter System Science with focus on Europa, Io (NASA-JEO)

Space Segment (ESA, Jupiter Ganymede Orbiter (JGO))

- Launch: Ariane 5 (CSG) 2020, Transfer: 5.9 y (6.5y) VEEGA-type, no deep space manoeuvre
- Arrival: 2026, Jupiter insertion (12.5R_J x 224 R_J) with Ganymede Gravity Assist
- Jupiter tour with multiple fly-bys at Callisto and Ganymede (low altitude, typ. 200 km)
- (1) Callisto resonant orbit, (2) Ganymede elliptical orbit (200x6000km), (3) Ganymede circular orbit (200 km)
- Avoidance of high radiation ⇒ JGO stays <100krad (8mm) total dose, 80kg shielding mass
- 3-axis stabilized S/C, dry mass (wet)= 1254kg (3480kg)
- Solar power (540W_{EOL}), array = 52 m², LILT technology, no concentrators, no RTG or RHU
- Chemical propulsion (total $\Delta v = 2467$ m/s + 445m/s navigation)

Payload: ~80kg science instruments, nationally provided

Directorate of Science and Robotic Exploration

Laplace - Europa Jupiter System Mission (EJSM)

Technology

- Radiation hardening and tolerance / tailored shielding
- Improved Environmental modelling
- Solar Cell Technology (LILT)

Status

- ESA and NASA Phase 0 studies completed.
- ESA and NASA individual & joint reports completed
- ESA/NASA down-selection Jupiter / Saturn ⇒ Jan. 09
- Industrial Studies: start in ~ May/Jun 09

International collaboration extension

possibly JAXA (Jupiter Magnetosphere Orbiter) and Russia

Tandem – Titan Saturn System Mission (TSSM)

ESA/NASA Outer Planet candidate mission

- Saturn System science, Titan in-situ science (atmosphere, surface, lake)
- NASA: Titan orbiter carrying In-Situ Elements (ISEs)
- ESA: ISEs, Mongolfiere Balloon and short-live Lander
- Balloon Technology from CNES

Space Segment

- Launch by NASA, Orbiter carrying ISE's (up to 800 kg)
- Release of ESA in situ elements after SOI at 3rd Titan fly-by
- Montgolfier: 599 kg (24 kg P/L), targeted at mid latitude (20° N), power MMRTG
- Short lived (battery) lander: 190kg (27kg P/L), northern polar lakes (Kraken Mare)

Payload: Nationally provided

- 24 kg on montgolfiere,
- 27 kg on lander

Directorate of Science and Robotic Exploration

Tandem - Titan Saturn System Mission (TSSM)

Technology

Balloon (CNES) – material & inflation

Status

- ESA and NASA Phase 0 studies completed.
- ESA and NASA individual & joint reports completed
- ESA/NASA down-selection Jupiter / Saturn ⇒ Jan.
 09
- Industrial Studies: start in ~ May/Jun 09

and Robotic Exploration

Technology Development Plan Implementation

esa_{science}

Elaboration of CV Technology Plan

- Comprehensive Technology Development Plan, including ESA activities and National activities on payload
 - ✓ General objective: TRL ≥ 5 before starting Implementation Phase (B2/C/D)
- Separation line between ESA and Member States for Astrophysics missions was agreed at June 08 SPC workshop
 - ✓ Large and complex payload elements that are strongly interleaved with the spacecraft design remain under ESA responsibility. Example: IXO telescope.
 - ✓ Focal plane instruments under Member States responsibility. Example: SAFARI on SPICA.
 - ✓ For cryogenic instruments, the last cryogenic stage(s) which are physically embedded in the instrument are assumed to be part of the instrument assembly
- ESA activities (subject of this meeting)
 - ✓ Mainly funded by TRP/CTP technology programmes
 - ✓ Work Plan and Procurement Policy approved by IPC in June/September 08
 - ✓ Planning horizon: 3-4 years, up to end 2011
 - ✓ ESA activities for 2008-2009 approved for implementation
- Payload National activities
 - ✓ Are being consolidated with the Member States (convergence expected by June 2009)

ESA T.D.P. content

Medium Class Missions (M)

- ✓ High technology readiness level (supposed TRL ≥ 5, CV mission selection criterion)
- ✓ On ESA side: No mission specific technology developments before down-selection end 2009. Pre-developments can be envisaged in the development phase, if justified by the development schedule

Large Class Missions (L)

- Ambitious long term missions, high technical complexity requiring technology developments
- ✓ TDAs to be implemented ASAP, aiming at TRL ≥ 5 for the mission adoption

Future Science Programme Themes

- ✓ Identified from the CV proposals by AWG, SSWG, FPAG in Oct 2007
- ✓ TDAs to be implemented ASAP, subject to prioritisation by Advisory Bodies,
- ✓ Technical objective: TRL ≥ 4 by next CV call in 2011, for enabling mission selection

Generic Technologies for Future Science Missions

✓ Multiple-use technologies required for future Science Programme

ESA T.D.P. evolution

- The activities over 2008-2009 are being implemented
- The activities in 2010-2011 are preliminary will be revisited
 - ✓ Revision expected after M-mission down-selection, beginning 2010
- More generally, the TDP will be updated regularly for reflecting the programme needs. First update is foreseen by June 09 and should include:
 - ✓ Revisit of Outer Planet activities following the down-selection
 - ✓ Solar Orbiter complement activities
 - ✓ Activities for preparing the future Exoplanet mission, following the EPRAT working group conclusions

Procurement Policy and Special Initiatives

- The nominal Procurement Policy is defined in the plan and has been approved by IPC
- Some activities can be subject to Special Initiatives for Geo-return rebalance. Countries concerned for 2008-2009: A, CH, N and IRL
- For Special Initiatives (S.I.) activities, the nominal procedure is the following:
 - ✓ Eligibility to S.I. will be explicitly stated in the ITT (cover letter)
 - ✓ The competition will take place as usual, according to best practices and nominal procurement policy
 - ✓ Following the T.E.B. report, a proposal produced by a company belonging to S.I. country can be retained by the Agency, even if not ranked first, but only if the proposal is technically satisfactory.

TDP Implementation Plan 1./6 (CTP)

Mission Theme	Reference	Activity Title	PP	Start
IXO	C216-003MM	Bessy X-ray test facilities upgrade plan	DN/S	Q4 2008
IXO	C216-004MM	Development of XEUS Si pore optics and mass production processes	C(1)	Q2 2009
IXO	C216-005MM	Panter X-ray test facilities upgrades	DN/S	Q4 2008
IXO	C216-006MM	XEUS mirror module ruggedizing & enviromental testing Ph. II	С	Q4 2009
LISA	C207-009PW	GRS Front End Electronics characterization for LISA	C(2)	Q2 2009
LISA	C207-010EE	Compact low noise magnetic gradiometer	C(1)	Q4 2008
LISA	C207-011PW	Charge Management System for LISA	C(2)	Q1 2009
LISA	C207-012PW	Opto-mechanical stability characterization for LISA	C(2)	Q4 2008

TDP Implementation Plan 2./6 (CTP)

Mission Theme	Reference	Activity Title	PP	Start
LISA	C207-013PW	Metrology system for LISA	C(2)	Q1 2009
LISA	C207-014PW	High-power laser system for LISA	C(2)	Q2 2009
LISA	C207-016PW	Outgassing and Contamination characterization for LISA	C(2)	Q3 2009
Several	C201-030ED	High processing power DPU based on high rel. DSP	C(2) *	Q4 2008
Several	C220-032MC	15K Pulse Tube cooler	O	Q2 2009
Several	C222-034QC	CCD radiation characterisation	DN/S	Q4 2008
Several	C223-035QM	Characterisation of ultra-stable materials at cryogenic temperature	O	Q2 2009

^{*} Subject to Special Initiative TBC

Directorate of Science and Robotic Exploration

TDP Implementation Plan 3./6 (TRP)

Mission Theme	Reference	Activity Title	PP	Start
Laplace Tandem	T201-002ED	Latch up protection for COTS (Commercial, off-the-shelf) digital components	C *	Q1 2009
Laplace Tandem	T201-003ED	Low mass SpaceWire	C(1)	Q4 2008
Laplace Tandem	T201-004ED	DAREplus (Design Against Radiation Effects) ASICs for extremely rad hard & harsh environments	DN/S	Q4 2008
Laplace Tandem	T203-006EP	Stirling Engine Radioisotopic Power System Requirement Study	ပ	Q4 2008
Laplace Tandem	T203-007PA	Novel Low Power Radioisotope Power Generator	C	Q1 2009
Laplace Tandem	T203-008PA	Optimized electrical power conversion for RHU based systems.	ပ	Q1 2009
Laplace Tandem	T204-009EE	Radiation Effects on Sensors and Technologies for Cosmic Vision SCI Missions (REST-SIM)	C(2)	Q1 2009
Laplace Tandem	T222-015QC	Radiation characterisation of RT digital CMOS technology	C(2)	Q4 2009
Laplace Tandem	T222-016QC	Radiation hard memory	C(2)	Q2 2009

^{*} Subject to Special Initiative TBC
Directorate of Science
and Robotic Exploration

TDP Implementation Plan 4./6 (TRP)

Mission Theme	Reference	Activity Title	PP	Start
Laplace Tandem	T222-017QC	Radiation Tolerant analogue / mixed signal technology survey and test vehicle design	C *	Q1 2009
Laplace Tandem	T222-018QC	Front-end readout ASIC technology study and development test vehicles for front-end readout ASICS	C *	Q1 2009
Laplace Tandem	T222-019QC	Survey of critical components for 1 Mrad power system design including delta radiation characterisation of RH power EEE components	C(1)	Q4 2008
Laplace Tandem	T222-020QC	Radiation characterisation of Laplace/Tandem critical RH optocouplers, sensors and detectors	C(1)	Q4 2009
Laplace Tandem	T223-021QM	Characterisation of radiation resistant materials Phase 1	C(2)	Q1 2009
IXO	T216-022MM	Large area X-ray window development.	C(1)	Q3 2009
IXO	T216-023MM	Back-up XEUS optics technology Phase 1	C(1)	Q4 2008
IXO	T216-026MM	XEUS mirror module ruggedizing & enviromental testing	C(1)	Q4 2008

* Subject to Special Initiative TBC

Directorate of Science and Robotic Exploration

TDP Implementation Plan 5./6 (TRP)

Mission Theme	Reference	Activity Title	PP	Start
Several/ EUCLID	T204-028EE	Solar/interplanetary electron hazards	C(3)	Q1 2009
Several/ Marco Polo	T205-029EC	Autonomous GNC Technology for NEO proximity, Landing and sampling Operations - Phase 1	С	Q1 2009
Several/ BPOL	T207-034EE	Low-loss, low-mass, large lenses with anti-reflection coating	C(1) *	Q3 2009
Several/ Phoibos	T203-035EP	Near-sun power generation: Identification of best suitable thermoelectric converters	С	Q1 2009
Several/ Phoibos	T223-038QM	Materials compatibility for the PHOIBOS mission (high temperature under high UV load)	C(2)	Q4 2008
Several	T204-042EE	Computational tools for spacecraft electrostatic cleanliness and payload analysis	C(1)	Q3 2009
Several	T204-043EE	Rad-Hard Electron monitor	C(1) *	Q3 2009
Several	T204-044PA	Solid-state neutron detector	C(1)	Q4 2008

* Subject to Special Initiative TBC

Directorate of Science and Robotic Exploration

TDP Implementation Plan 6./6 (TRP)

Mission Theme	Reference	Activity Title	PP	Start
Several	T212-045GS	X/K band feed	С	Q3 2009
Several	T212-046GS	X/K/Ka band dichroic mirror	С	Q3 2009
Several	T216-047PA	Prototype ASIC development for large format NIR/SWIR detector array.	C(1)	Q2 2009
Several	T216-050PA	Low-noise scintillator detectors for planetary remote-sensing	C(1)	Q4 2008
Several	T217-051MP	Ablation radiation coupling	С	Q3 2009
Several	T217-052MP	Kinetic shock tube for radiation data base for planetary exploration	С	Q4 2008
Several	T220-053MC	Advanced 2K JT cooler	DN/S	Q4 2008
Several	T223-054QM	Development & testing of bonding and coating technologies of high temperature materials (C/C, C/SIC, ablative materials etc.) under extreme conditions	C(2)	Q4 2008
Several	T223-055QM	Materials Charging effects under extreme environments (ultra-low temperatures and high radiation fields)	C(2)	Q4 2008

The End

