A mission proposed for the ESA-CAS joint mission http://ep-ecjm.bao.ac.cn

Einstein Probe

exploring the dynamic X-ray Universe

Weimin Yuan

Space Science Division
National Astronomical Observatories of China

and the Einstein Probe team

Einstein Probe team

Space Science Division
National Astronomical Observatories
of China (NAOC), CAS

Science team

Key Lab for Particle Astrophysics Institute of High-energy Physics (IHEP), CAS

Tsinghua University, China

Cosmic X-ray transients and variable sources

ESA Cosmic Vision grand themes

- 3. what are the fundamental physical laws of the Universe?
- 4. How did the Universe originate and what is it made of?

Collapse of stars/formation of BH/NS Change in black hole accretion Merger of compact objects **Extreme conditions**

Einstein Probe: a wide-field imager using novel X-ray focusing technology

Micro-pore (MPO) lobster-eye telescopes

Optics of lobster-eye

Wide-field X-ray Telescop—WXT

FoV 36°*36° (1345 sq.deg.)

Bandpass: 0.5-4keV

FWHM ~ 4'

Detectors: gas/MCP detectors

Advantage

- true imaging
- wide FoV
- vignetting-free
- low weight

Detecting sensitivity as function of exposure time

Detectability of some of the known types of X-ray transients

Mission key science goals

Uncover (otherwise) quiescent Black holes at all astrophysical mass scales by capturing their rare transient flares → black hole finder & explorer Supermassive BH, Intermediate-mass BH, stellar-mass BH

Systematic survey of soft X-ray transients and monitoring variability of known X-ray sources at high sensitivity over wide time-scales

Detect and localize electromagnetic-wave sources of gravitational-wave events by working with new generation of gravitational-wave detectors

ESA Cosmic Vision themes & questions

Matter under extreme conditions

Do BHs exist in almost every galaxy?

When/how first stars form/explode?

The gravitational Universe

What are the EM source of GW events?

The evolving violent Universe

How two compact objects merge?

1. A new class of transients: tidal disruption of stars by massive black holes at centers of inactive galaxies

- ★ Explore quiescent MBH and TDE rate
- → Fundamental Q: are supermassive black holes prevalent in the Universe?
- → A unique lab to study accretion physics
 - ♦ How matter falls into black holes?
 - → Entire evolution of BH accretion process
 - ♦ How relativistic jets are set on?

- → Large samples needed (~20 so far)
- ♦ Need prompt detection
 - ◆ Catch rising phase and peak
 - multi-wavelength follow-up

Einstein Probe is a perfect instrument to detect TDE; at a rate 30-300/year (jetted: several/year)

2. Systematic Survey of X-ray transients & variability

High-redshift GRB

Early universe

Trace first stars/BH

X-ray flash & LL GRB **GRB** physics

Active galactic nuclei Extreme gravity, BH accretion/jets/growth

BH Tidal disruption Quiescent MBH finder BH accretion/jets 30-300/yr

Intermediate-mass BH BH physics/accretion

SN shock breakout SN physics Size of progenitors

extreme

Star X-ray flares Magnetic fields Corona activity

Thermal nuclear burst magnetic Field **Neutron stars physics**

BH X-ray binary Extreme gravity BH physics/accretion

Comets

charge exchange emission

9/30

3. Detect and precisely locate the photonic counterparts of gravitational-wave events

astrophysical gravitation wave sources

- Co-rotating compact objects (NS/BH)
- ♦ Merger of NS/BH bursts of GW signal.

PSR 1913+16 indirect evidence for GW Nobel Price 1993

NS-NS, NS-BH mergers within several hundred Mpc (Abadie+ 10)

Position errors: 10-100 sq.deg.

Why it is Important to detect photonic source of GW events?

- → Improve S/N of GW detection
- ♦ Precise localization of GW events
 - allow multi-wavelength follow-up observations
 - identification of astrophysical counterparts
- Study astrophysical origin of GW sources, e.g. host galaxy, redshift
- Study the physics of GW sources

Mission concept

- Payload
 - → Wide-field X-ray telescope (WXT)
 - → Follow-up X-ray telescope (FXT)
- → Fast alerts data downlink (French VHF)
- → Budget
 - ♦ Weight: 245 Kg (payload 54.75kg)
 - → Power=49 w (layload)
- Operation
 - → A series of pointings each orbit (e.g. 11min each)
 - Cover entire night sky every 15 hrs (10 orbits)
- ♦ Mission life: 3 years
- ♦ Data
 - trigger multiwavelength follow-up worldwide

 - ♦ high scientific impact

Heritage

Bepi-Colombo MIXS built @ Leicester

Progresses made in China

- MPO telescope design and simulations (NAOC)
- → Design and test of focal plane detectors (TsHU)
- Built X-ray beam line for testing
- Designed and built telescope assembling facility

Simulated observed X-ray sky image based on ROSAT RASS data

PI: Chen Zhang
X-ray imaging Lab @NAOC

Laser-guided MPO telescope assembling bench @NAOC

PI: Hua Feng X-ray detector Lab @Tsinghua Univ.

Current status

The larger-FoV version of Einstein Probe (3 x FoV) has been selected as one of the "Mission candidates for advanced study" under the CAS "Priority Strategy Space Science Programme" in July 2013

- Funded for phase A+ (half way to B) study 2014-2015
- Mission definition and proto-type building
- Built up a science working group (> 40 scientists from > 10 institutes)

Original larger-FoV version of Einstein Probe

Concluding remarks

- ♦ The first-ever X-ray all-sky monitor employing focusing imaging technology
 - → unprecedented sensitivity and large combination with FoV (Grasp)
- ♦ Open a new window and make a leap forward in time-domain astrophysics
- Multifold great potential for new science frontiers

 - → EM counterparts of GW events
 - ♦ New type of transients?
- ♦ Synergy with multi-wavelength, multi-messenger facilities around 2020
- ♦ Scientific impact will span all fields of astronomy:
 from comets, stars, compact objects, BH, galaxies, cosmology, to GW,
- ♦ An already on-going collaboration between China and Europe

Prospects of ESA-CAS collaboration

- ♦ Collaboration with Leicester University UK already started
 - ♦ WXT and FXT design and assembling
 - ♦ Detectors
- ♦ Interests expressed from French colleagues for providing VHF network
- ♦ Opportunities of involvement are open for development of
 - ♦ WXT focal plane detectors
 - ♦ FXT detector

Thank you for your attention!