

A <u>High Resolution</u> Gamma-Ray Space Telescope

A. Bravar¹, M. Pohl¹, M. Su², R. Walter³, <u>X. Wu¹</u> ¹DPNC, University of Geneva ²Kavli Institute for Astrophysics and Space Research, MIT ³ISDC, University of Geneva

First Workshop on a CAS-ESA Joint Scientific Space Mission 25-26 February 2014, Chengdu

Outline

- Overview
- Scientific objectives
- Suggested Payload
- Mission Concept
- Potential Collaboration projects
- Conclusions

Overview

- PANGU (PAir-productioN Gamma-ray Unit)
 - An unprecedented high resolution (\$ 1°) γ-ray space telescope dedicated to the sub-GeV (~100 MeV to ~1 GeV) region

An unique instrument to open up a frequency window that has never been explored with great precision

- A wide range of topics of Galactic and extragalactic astronomy and fundamental physics can be attacked
 - Extreme physics of extended/compact objects (extensive targets)
 - Galactic and extragalactic cosmic rays (origin, acceleration mechanism)
 - Search for Dark Matter (unique capability)
 - Detect and determine the high-energy behavior of gamma-ray transients.
 - Fundamental Physics, e.g. Baryon asymmetry in early universe
 - Solar and terrestrial high energy phenomena
- Innovative instrument concept

Xin Wer Thin target material (scintillating fiber) with magnetic spectrometer 3

PANGU: All-sky explorer for the 100 MeV - GeV Universe

What a better angular resolution brings you?

- Sub-GeV sky is dominated by diffuse γ -ray emission (>80%) ullet
 - Need good angular resolution to identify sources

Scientific Objectives: Highlights

- Origin and acceleration of high energy cosmic rays
 - Low energy spectrum of supernova remnants (SNR), OB associations (super bubbles) and galaxy clusters
 - Gamma-ray burst (GRB)
 - Fermi bubble
 - Polarization
- Low mass Dark Matter search
- Gamma-ray emission from the inner galaxy
- Pulsation search in millisecond pulsar
- Baryon asymmetry signature in diffused γ-ray background
- Gamma-ray emission from solar flares

Supernovae Remnants and Particle Acceleration

Science's Top 10 Breakthroughs of 2013!

- PANGU will distinguish two scenarios without ambiguity
- PANGU will detect
 more supernova
 remnants with at
 least x5 better
 resolution!

Finding Gamma-Ray Burst (GRB)

Are GRB energetic enough to account for UHECR?

Fermi Bubbles --- Hadronic v.s. Leptonic

2014 Rossi Prize!

- Gigantic pair of bubbles in gamma-ray
 - Unexpected discovery, measurement at < GeV is systematics dominated
 - 100 MeV to GeV range is crucial to distinguish leptonic origin of the gamma rays from hadronic origin

Measurement of < GeV cutoff is the key to infer the cosmic ray electron/ proton spectrum at low energy

Origin of cosmic ray Cutoff within the Fermi bubbles is unclear.

Blazars and Origin of the UHECRs

Jet spectra can be reproduced by

leptonic or hadronic models

Standard hypothesis: shocks in hadronic jets of Active Galactic Nuclei

Unique Role in Low Mass Dark Matter Search

Underground direct detector search

IceCube neutrino search

Collider search for dark matter

Unique Role in Low Mass Dark Matter Search

No missions are sensitive to PANGU's energy range --- unique in dark matter search, chance for discovery

Mysterious Gamma-ray Emission from Inner Galaxy

Pulsars: Ideal Targets for PANGU

Millisecond pulsars (MSP) peaked at ~GeV IIII Unique for PANGU!

~5 better PSF ➡ ~30 lower background to search pulsations

Fermi γ-ray pulsar distribution: contamination from disk is important (small PSF required!)

Gamma-ray observations can help to disentangle the geometry of pulsar magnetospheres and emission regions

Baryon Asymmetry

- Baryon asymmetry in the early universe predict redshifted baryon (i.e. pion) annihilation signal
 - The observed 1-100 MeV cosmic γ-ray background has large uncertainty. Its anisotropy is unknown.

PANGU will measure the anisotropy of the CGB and give limit on the existence of anti-matter in the Universe on scales of 0.1 Gpc

Gamma-ray Emission from Solar Flares

LAT 1 day all sky data >100 MeV

Bad PSF, cannot resolve the Sun ➡ no information on particle acceleration cite Kin Win a static sta

Bright solar flares have been detected by Fermi

- 1000 time the flux of the steady Sun
- 100 times the flux of Vela
- 50 times the Crab flare
- High energy emission (>100 MeV, up to 4 GeV) lasts for ~20 hours
- Softening of the spectrum with time

PANGU can resolve the flare in γ-ray!

Sub-GeV Gamma Ray Detection

- The science case for high resolution (≤ 1°) gamma-ray space telescope around 100 MeV is very compelling
 - But it has yet to be realized, best instrument up to now is Fermi

Detection Principle

- At ~100 MeV, pair production dominates
 - Very small cross section ⇒ need more material for good acceptance
 - Material is the limiting factor of angular resolution because of important multiple scattering at ~MeV

Angular resolution at 100 MeV

- Angular resolution contributions
 - Nuclear recoil introduce ~0.3° on angular resolution @100 MeV
 - Reconstruction of the pair (energy measurement)

NIMA 701, 225-230

- Best if energy of both tracks can be measure
- If not normally use the direction of the leading (longest and straightest) track
 - Extra error θ_{68} of ~0.65° @ 100 MeV
- Track angular resolution
 - Multiple scattering: For $\theta_{MS} = 0.5^{\circ}$ @70 MeV, total material between 2 measurements should be less than 0.33% X₀!
 - 310µm Si, 1.3mm Fiber, 5.1cm Xe gas
 - Tracker nominal resolution: $\sqrt{2\sigma_x}/d = 1.35^\circ$ for $\sigma_x = 100 \mu m$, d=6mm
 - Final resolution can approach 1.15×θ_{MS} when using many (~6) measurement points
 e⁺

Possible Detector Concepts

- To achieve ≤1° angular resolution passive material should be minimized and active detector should be thin or low density
 - To increase effective area (mass!) needs many layers or large volume
- Concepts for high resolution gamma pair telescope studied before
 - Low density gas TPC: HARPO, AdEPT (5-200 MeV), ...
 - Potentially very good resolution
 - Need large pressure vessels (AdEPT: 6×1m³ vessels for 20 kg gas)
 - All silicon : MEGA/GRIPS, TIGRE, CAPSiTT ...
 - Optimized for both Compton and pair detection (0.1 100 MeV)
 - MEGA/GRM: Double-sided SSD, distance 5 mm, 500 μm thick
 - CAPSiTT: Double-sided SSD, distance 1 cm, 2 mm thick
 - TIGRE: Double-sided SSD, distance 1.52 cm, 300 µm thick
 - Scintillating fiber: this proposal: a new all-fiber concept
 - Previous concepts with converter: SIFTER, FiberGLAST

Angular resolution of pair telescopes

Xin Wu

21

Our Proposal

- All-fiber (or all silicon) tracker, both mature technologies ۲
 - Challenges are mainly engineering: optimal use of the limited weight ____ and power budgets
- Silicon has been successfully used in similar space missions •
 - Fermi, AGILE, Pamela, AMS-02, ...
- Fiber is cheaper, less fragile, less dead material, flexible geometry, but ٠ the technology of multichannel scintillating photon detector (SiPM), as well as readout electronics, is newer
 - Rapid development lately because of application in high energy physics, eg. LHCb, Mu3e, ...
 - Also in space: balloon prototype Perdaix of PEBS

SA workshop, 25-26/02/14

22

NIMA 628(2011)403

How about the energy measurement?

- Standard way is to use a calorimeter under the tracker
 - Eg. AGILE mini-calorimeter, CsI, 1.5X₀, 37x37x3 cm³, ~20 kg (30 kg total)
 - But energy resolution ~70% at 100 MeV because of leakage
- Use multiple scattering: average deflection angle $\propto 1/p$
 - Need very good position resolution
 - Only usable below ~100 MeV
- Magnetic spectrometer with permanent magnet
 - Tracker-target inside magnet
 - Allows early separation of 2 tracks
 - Need small σ_x or strong field since distance between layers is small
 - Size of the magnet is coupled to the size of the target
 - Magnet below the tracker-target (preferred configuration)
 - Magnet can be smaller and more independently optimized
 - Only measures momentum, no early separation of 2 tracks

- 3 sub-systems: target-tracker, magnet + lower tracker, Anticoincidence
 - Target-tracker : ~ 40 x 40 x 40 cm³
 - Magnet: $r_2 = 26$ cm, $r_1 = 25$ cm, height 10 cm, field in +y direction
 - Lower tracker: one X-layer above, one X-layer, and two X-Y layers below, ~10 cm between layers
- Xin Wu- Anticoincidence detector (ACD) on 5 sides

The Target-Tracker

- Possible layout
 - x-y double layers with 6mm inter-distance, 50 double layers
 - Requirement: each layer measure x and y to ~70 µm, total material every 6mm is ~0.3% X₀
- Tracking layer with ~0.3% X₀ total
 - 2 layers SciFi of 0.65 mm each (Polystyrene equivalent), ⇒ each layer formed by a stack of 3 layers of ø=250 µm fibers
 - If silicon: 1 double-sided SSD of 300 μm or 2 single sided SSD of 150 μm each
- Total weigh of fiber alone ~10kg (polystyrene density ~0.9 g/cm³)
 - Fiber layers need to be supported by very light weigh structure!
 - A double layer of fiber is very light, only ~200 g
- Support structure, electronics, ACD and possible shielding needs to fit into the remaining 20 kg

Power Consumption

- Total number of readout channels of 50 double-layers in the target + 6 layers in the lower tracker, with 250 μm readout pitch, is ~170k channels (1600 per single layer)
 - $-\,$ Fibers can be can be readout by SiPM of 250 μm pitch
 - Readout ASIC needs to be developed. First interaction with some companies indicates it is possible to achieve ~0.2mW/channel, similar to the current performance ASICs of Si strip detectors
 - Total ASIC power ~35 W
 - With some weight and complexity penalty, it could be possible to use one fiber to 2 measurement locations some distance apart
 - Ambiguity is negligible because of the low occupancy
 - Power consumption of the ASICs reduced by x2
- Other readout ides like ICCD (rate and weight limitation?)

PANGU Magnetic Spectrometer

- Momentum measurement through bending angle
 - $\theta = 0.3 \text{ LB/p [mm T MeV}^{-1}] = 3/p \text{ radian (p in MeV)}$
 - 3 mrad (0.17°) for 1 GeV, 30 mrad (1.7°) for 100 MeV
 - $\Delta p/p = p/(0.3 LB) \Delta \theta = (p/3) \Delta \theta$ (p in MeV)
 - $\Delta\theta$ dominated by tracking resolution (σ_x/d) at high energy, and by multiple scattering at low energy
 - $\Delta p/p \sim 30\%$ -50% reachable with B=0.1 T, L = 10 cm, σ_x =70 µm, d = 10 cm for p = 100 -1000 MeV
- How to produce a magnetic field?

Permanent Magnet

- Halbach array with NdFeB magnet
 - $B = B_0 V_f \ln(r_2/r_1)$
 - B₀ is the remnant field, assume 1.5 T (strongest available today)
 - V_f is the the filling factor, assume 0.9
 - r₁ is the inner radius, assume 25 cm
 - For B = 0.1 T, $r_2 = r_1 \exp(0.1/(1.5*0.9)) = 26.9$ cm
 - Magnet volume = 10 x (26.9²-25²) π =3098 cm³
 - − Density of magnet = 7.5 g/cm³ \Rightarrow weight of magnet = 23.2 x 0.9 = 21 kg
 - It is possible to allocate about half of the weight budget (~30 kg) for a magnet with a field ~0.1 T

Performance Estimation

- Geant4 simulation to asses the performance
 - For practical reasons uses 150 µm single sided silicon detector, 242 µm pitch, digital readout \Rightarrow 70 µm position resolution
- Results are very preliminary

Point Spread Function

• For normal incidence (cos(θ)>0.975), both tracks in the lower tracker

the first measurement point weighted by measured momenta

Photon Energy Measurement

• For normal incidence (cos(θ)>0.975), both tracks in the lower tracker

Raw width ~20-30% for 100MeV – 1GeV, bias should be corrected

Polarisation Measurement

$$d\sigma/d\varphi = 2\pi\sigma_0 \left(1 + P_{\gamma} \cdot A \cdot \cos(2\varphi - 2\varphi_{pol})\right)$$

- Azimuthal angle distribution in the plane perpendicular to the γ direction
 - P_{γ} : degree of polarisation; ϕ_{pol} : polarisation direction
 - A: Analyzing power, average ~0.2 for pair production (kinematic dependent)

- Key to the measurement
 - Azimuthal angular resolution: opening angle and momentum
 - Anisotropy of the detector!

Detector Anisotropy (Modulation)

- Detector modulation because of bad ϕ resolution when particle goes in parallel to the strip direction

Mission Concept

- Low earth orbit
- All-sky survey and pointed observations
 - With possibility to rotate the payload to study systematic effect of polarisation measurement
- Minimum lifetime three years
- Science data open to the world community

Potential Collaboration Projects

- Many interesting and challenging topics for collaboration
 - Conceptual Design: Payload performance and optimization
 - Permanent magnet: light weight, uniformity
 - SciFi tracking layer: automatic winding process, placement precision, gluing process, light weight support, ...
 - Target-tracker: integration of layers on precise light weigh frame
 - Photon detector
 - SiPM: high efficiency, low dark current, high density
 - Other photon detection scheme?
 - FE ASIC: low power
 - Trigger, Readout and DAQ: low power consumption, low dead time, robust trigger algorithm, flexibility for different observation mode
 - ACD: low weight, coverage, segmentation
 - On-ground data processing, science preparation: Science data center

Conclusions

- PANGU is an *unique opportunity* for high energy astrophysics. It will resolve and monitoring the sub-GeV sky with unprecedented spatial resolution, separating diffuse gamma-ray emission from point sources
 - PANGU science is not "incremental science", it will lead to fundamental discoveries and understanding.
- PANGU is synergic with Gamma-400, DAMPE, HERD, CTA and other ground-based and space detectors (e.g., radio, optical, X-ray, TeV, gravitational wave experiments)
- Payload concept is innovative but the technology is ready
 - The qualification of scintillating fiber tracker for space application would be a major technological advance

Thank You!

Welcome to join!

CAS-ESA workshop, 25-26/02/14