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 PANGU (PAir-productioN Gamma-ray Unit)

— An unprecedented high resolution (< 1°) y-ray space telescope dedicated
to the sub-GeV (¥100 MeV to ~1 GeV) region

An unique instrument to open up a frequency window

that has never been explored with great precision

* A wide range of topics of Galactic and extragalactic astronomy
and fundamental physics can be attacked
— Extreme physics of extended/compact objects (extensive targets)
— Galactic and extragalactic cosmic rays (origin, acceleration mechanism)
— Search for Dark Matter (unique capability)
— Detect and determine the high-energy behavior of gamma-ray transients.
— Fundamental Physics, e.g. Baryon asymmetry in early universe
— Solar and terrestrial high energy phenomena

* Innovative instrument concept
xinwe Thin target material (scintillating fiber) with magnetic spectrometer :



PANGU: All-sky explorer for the
100 MeV - GeV Universe

Many sources, big
discovery space

~1/3 are “unassociated”
sources with
unknown nature!

What has Fermi found: The LAT two-year catalog

ﬁ"\“ : Supernova
il - Pulsars remrlants Globular clusters,
e 4% high-mass binaries,

6% normal galaxies o No association Possible association with SNR or PWN
Non-blazar anc Jore < AGN * Pulsar A Globular cluster

activeﬁzlaxies * Starburst Gal & PWN = HMB
+ Galaxy o SNR * Nova

Unknown Blazars The Second Fermi LAT Catalog

31% 57%

Nolan et al. (2012), ApJ, 199, 31
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What a better angular resolution brings you?

* Sub-GeV sky is dominated by diffuse y-ray emission (>80%)
— Need good angular resolution to identify sources

0.1-0.5 GeV 2-300 GeV

A I-.-HE ....

Xin Wu CAS-ESA workshop, 25-26/02/14 Goal: PANGU 0.1-0.5 GeV
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Scientific Objectives: Highlights

* Origin and acceleration of high energy cosmic rays

— Low energy spectrum of supernova remnants (SNR), OB associations
(super bubbles) and galaxy clusters

— Gamma-ray burst (GRB)
— Fermi bubble
— Polarization

* Low mass Dark Matter search

e Gamma-ray emission from the inner galaxy

* Pulsation search in millisecond pulsar

* Baryon asymmetry signature in diffused y-ray background
e Gamma-ray emission from solar flares

Xin Wu CAS-ESA workshop, 25-26/02/14 6



Supernovae Remnants and Particle Acceleration

Science's Top 10 Breakthroughs of 2013!

 PANGU will
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Finding Gamma-Ray Burst (GRB)

GRB 090510A

GRB maxima

at100keV _ o
and 100 MeV -
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e Sub-GeV sky prompt emission

Peak at 100 keV

e Reverse and forward shocks

— Delayed pair dominated flash of GeV-TeV

(EIC). Only few detected

eF, [ergcm‘2 s

— Delayed Interaction of blast wave with the
progenitor wind. "™shock distance, I and

wind density

(Pohl & Eichler, 2011)
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Fermi Bubbles --- Hadronic v.s. Leptonic

2014 ROSSi Prize| Fermi data reveal giant gamma-ray bubbles

* @Gigantic pair of bubbles in gamma-ray \ ‘

— Unexpected discovery, measurement
at < GeV is systematics dominated

-
—
-l

-

— 100 MeV to GeV range is crucial to
distinguish leptonic origin of the

gamma rays from hadronic origin - Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al
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Blazars and Origin of the UHECRs

Standard hypothesis: shocks in * Jet spectra can be reproduced by
hadronic jets of Active Galactic Nuclei leptonic or hadronic models
L e — Only hadronic models predict neutrinos
\ ST ' and high polarisation in sub GeV range.
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Unique Role in Low Mass Dark Matter Search

Fermi gamma-ray search

Upper limits, joint likelihood of 10 dSphs
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Unique Role in Low Mass Dark Matter Search

Fermi gamma-ray search IceCube neutrino search
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Mysterious Gamma-ray Emission from Inner Galaxy

E® dN/dE (GeV/cm?/s/sr)
E® dN/dE (GeV/cm?/s/sr)
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Pulsars: Ideal Targets for PANGU

Millisecond pulsars (MSP) peaked o
at ~GeV "™ Unique for PANGU! i Aeie e L

~5 better PSF = ~30 lower
background to search pulsations

Other pulsars
LAT radio-loud pulsar
LAT radio-quiet pulsar

Radio MSP from LAT UnID

> > H e -

LAT millisecond pulsar

Fermi y-ray pulsar distribution: contamination
from disk is important (small PSF required!)

Gamma-ray observations can help to

Best Fit: ]
5 [ AN/E~E™'* exp(-E/3.3 GeV) k disentangle the geometry of pulsar

' S el o magnetospheres and emission regions
0.1 05 1.0 5.0 10.0 50.0

E, (GeV)

Example of MSP energy spectrum
Xin Wu CAS-ESA workshop, 25-26/02/14 14



Baryon Asymmetry

 Baryon asymmetry in the early universe predict redshifted
baryon (i.e. pion) annihilation signal
— The observed 1-100 MeV cosmic y-ray background has large
uncertainty. Its anisotropy is unknown.

= PANGU will measure the anisotropy of the CGB and give limit on the

existence of anti-matter in the Universe on scales of 0.1 Gpc

Cosmic gamma-ray diffuse background Gamma-ray spectrum from proton-
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Gamma-ray Emission from Solar Flares

Bright solar flares have been detected by Fermi
LAT 1 day all sky data >100 MeV * 1000 time the flux of the steady Sun
March 6, 2012 * 100 times the flux of Vela
50 times the Crab flare

* High energy emission (>100 MeV, up to 4
GeV) lasts for ~20 hours

* Softening of the spectrum with time

Galactic Plane

March 7, 2012

PANGU can
resolve the

flare in y-ray!

4
Bad PSF, cannot resolve the Sun = no

information on particle acceleration cite i, 55¢ 05/ 14 16




Sub-GeV Gamma Ray Detection

* The science case for high resolution (< 1°) gamma-ray space telescope around
100 MeV is very compelling

But it has yet to be realized, best instrument up to now is Fermi

P7REP_SOURCE_V15 PSF at normal incidence D7REP SOURCE V15 effectlve area at normaI incidence (cos(e) >0.975

-
o
N

——e-»Te%al-68 /o-contamment

Containment angle (°)
S

107E

10° 10° 10° 10
10° 10° 10* 10° Created on Mon Nov 4 12:14:03 2013 Energy (MeV)
Created on Mon Nov 4 12:14:09 2013 Energy (MeV)

PSF ~4-6° @100 MeV
Why so hard?

Xin Wu CAS-ESA workshop, 25-26/02/14 17




Detection Principle

le—% °

At ~100 MeV, pair production dominates

— Very small cross section = need more
material for good acceptance

— Material is the limiting factor of angular
resolution because of important multiple

scattering at “MeV
e ) W LS R B R 3 L
120 |-
100 (- Photoelectric effect Pair producti
> - dominant dominant
S 80
o
3
o 60 [
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N 10} Compton effect
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20
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Angular resolution at 100 MeV

* Angular resolution contributions

— Nuclear recoil introduce ~0.3° on angular resolution @100 MeV
— Reconstruction of the pair (energy measurement) NIMA 701, 225-230
* Best if energy of both tracks can be measure

* If not normally use the direction of the leading (longest and
straightest) track

— Extra error 6,4, of ~0.65° @ 100 MeV
— Track angular resolution

* Multiple scattering: For 6, = 0.5° @70 MeV, total material
between 2 measurements should be less than 0.33% X!

— 310um Si, 1.3mm Fiber, 5.1cm Xe gas
* Tracker nominal resolution: v2o,/d = 1.35° for 5,=100um, d=6mm

— Final resolution can approach 1.15x0,,, when using many (~6)

measurement points y et

—

nucleus/e- ©
Xin Wu CAS-ESA workshop, 25-26/02/14 19



Possible Detector Concepts

* To achieve <1° angular resolution passive material should be minimized
and active detector should be thin or low density

— To increase effective area (mass!) needs many layers or large volume
* Concepts for high resolution gamma pair telescope studied before
— Low density gas TPC: HARPO, AdEPT (5-200 MeV), ...
* Potentially very good resolution
* Need large pressure vessels (AdEPT: 6x1m3 vessels for 20 kg gas)
— All silicon : MEGA/GRIPS, TIGRE, CAPSITT ...
e Optimized for both Compton and pair detection (0.1 — 100 MeV)
« MEGA/GRM: Double-sided SSD, distance 5 mm, 500 um thick
 CAPSITT: Double-sided SSD, distance 1 cm, 2 mm thick
* TIGRE: Double-sided SSD, distance 1.52 cm, 300 um thick
— Scintillating fiber: this proposal: a new all-fiber concept
* Previous concepts with converter: SIFTER, FiberGLAST

Xin Wu CAS-ESA workshop, 25-26/02/14 20
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Our Proposal

* All-fiber (or all silicon) tracker, both mature technologies

— Challenges are mainly engineering: optimal use of the limited weight
and power budgets

* Silicon has been successfully used in similar space missions
— Fermi, AGILE, Pamela, AMS-02, ...

* Fiber is cheaper, less fragile, less dead material, flexible geometry, but
the technology of multichannel scintillating photon detector (SiPM), as
well as readout electronics, is newer

— Rapid development lately because of application in high energy
physics, eg. LHCb, Mu3e, ...

* Also in space: balloon prototype Perdaix of PEBS
— Position resolution ~70 um can be achieved NIMA 628(2011)403

Xin Wu




How about the energy measurement?

e Standard way is to use a calorimeter under the tracker
— Eg. AGILE mini-calorimeter, Csl, 1.5X,, 37x37x3 cm3, ~20 kg (30 kg total)
* But energy resolution ~“70% at 100 MeV because of leakage

* Use multiple scattering: average deflection angle c<1/p
— Need very good position resolution
— Only usable below ~100 MeV
* Magnetic spectrometer with permanent magnet
— Tracker-target inside magnet
* Allows early separation of 2 tracks
* Need small o, or strong field since distance between layers is small
* Size of the magnet is coupled to the size of the target
— Magnet below the tracker-target (preferred configuration)
* Magnet can be smaller and more independently optimized
* Only measures momentum, no early separation of 2 tracks

Xin Wu CAS-ESA workshop, 25-26/02/14 23



Sketch of a Possible PANGU Layout

ACD :

Lower Tracker

Target and magnet sizes

can be easily scaled to fit
with resource constraints!

* 3 sub-systems: target-tracker, magnet + lower tracker, Anticoincidence
— Target-tracker : ~ 40 x 40 x 40 cm3
— Magnet: r, =26 cm, r, = 25 cm, height 10 cm, field in +y direction

— Lower tracker: one X-layer above, one X-layer, and two X-Y layers
below, ~10 cm between layers

xinwu— Anticoincidence detector (ACD) on 5 sides y



The Target-Tracker

Possible layout
— x-y double layers with 6mm inter-distance, 50 double layers

— Requirement: each layer measure x and y to ~70 um, total material
every 6mm is ~0.3% X,

Tracking layer with ~0.3% X, total

— 2 layers SciFi of 0.65 mm each (Polystyrene equivalent), = each
layer formed by a stack of 3 layers of =250 um fibers

* If silicon: 1 double-sided SSD of 300 um or 2 single sided SSD of
150 um each

Total weigh of fiber alone ~10kg (polystyrene density ~0.9 g/cm?3)
— Fiber layers need to be supported by very light weigh structure!
* A double layer of fiber is very light, only ~200 g

Support structure, electronics, ACD and possible shielding needs to fit
into the remaining 20 kg

Xin Wu CAS-ESA workshop, 25-26/02/14 25



Power Consumption

* Total number of readout channels of 50 double-layers in the target + 6
layers in the lower tracker, with 250 um readout pitch, is ~170k
channels (1600 per single layer)

— Fibers can be can be readout by SiPM of 250 um pitch

— Readout ASIC needs to be developed. First interaction with some
companies indicates it is possible to achieve ~0.2mW/channel,
similar to the current performance ASICs of Si strip detectors

* Total ASIC power ~“35 W

— With some weight and complexity penalty, it could be possible to
use one fiber to 2 measurement locations some distance apart

 Ambiguity is negligible because of the low occupancy
* Power consumption of the ASICs reduced by x2
e Other readout ides like ICCD (rate and weight limitation?)

Xin Wu CAS-ESA workshop, 25-26/02/14 26




PANGU Magnetic Spectrometer

* Momentum measurement through bending angle
— 0=0.3LB/p [mMmm T MeV-!] = 3/p radian (p in MeV)
 3mrad (0.17°) for 1 GeV, 30 mrad (1.7°) for 100 MeV
— Ap/p =p/(0.3 LB) AO = (p/3) A6 (p in MeV)

* AB dominated by tracking resolution (o,/d ) at high energy, and
by multiple scattering at low energy

* Ap/p ~30%-50% reachable with B=0.1T, L =10 cm, 0,=70 pm,
d =10 cm for p =100 -1000 MeV

 How to produce a magnetic field?

Xin Wu CAS-ESA workshop, 25-26/02/14 27



Permanent Magnet

* Halbach array with NdFeB magnet
— B=B,V;In(r,/r,)
* B, is the remnant field, assume 1.5 T (strongest available today)
* V. is the the filling factor, assume 0.9
* r,is the inner radius, assume 25 cm
— ForB=0.1T,r,=r, exp(0.1/(1.5*0.9)) = 26.9 cm
— Magnet volume = 10 x (26.9%-252) t =3098 cm?
— Density of magnet = 7.5 g/cm® = weight of magnet = 23.2 x 0.9 = 21
kg
— It is possible to allocate about half of the weight budget (~30 kg) for
a magnet with a field ~0.1 T

Xin Wu CAS-ESA workshop, 25-26/02/14 28



Performance Estimation

 Geant4 simulation to asses the
performance
— For practical reasons uses 150 um single

sided silicon detector, 242 um pitch, digital
readout = 70 um position resolution

* Results are very preliminary

|

Xin Wu CAS-ESA workshop, 25-26/02/14 29
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Point Spread Function

* For normal incidence (cos(0)>0.975), both tracks in the lower tracker

?1 O
T, ::::::::::::::::::::::::::::::::::Néﬁﬁé}::ihé'iaéhéé::(:ééé:(é:);dé?é):::::::::::::::::::::::::::::_
=
g_) —e— 95% containment
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Measured photon direction = sum of two measured directions at [MeV]
the first measurement point weighted by measured momenta 30



Photon Energy Measurement

* For normal incidence (cos(0)>0.975), both tracks in the lower tracker

c L L L LN BN NI BN ELEL RLELELEL BRI IR
% 0.06— Normal incidence (cos(6)>0.975) —
o B N
o B Photon energy .
0-05—_ — 2000 MeV |
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B — 600 MeV ]

003__ 400 MeV _

L — 200 MeV -

= 100 MeV -

0'02;_ — 50 MeV B
0.01— L ]

B [y N

o- T ]

-1 -05 0 05 1 15 2 25 3 35 4

Ap/p

Raw width ~20-30% for 100MeV — 1GeV, bias should be corrected -



Polarisation Measurement

do/dp=2m0o, (1 +P - A-cos(2p - z%oz))

* Azimuthal angle distribution in the plane perpendicular to the y direction

— P,: degree of polarisation; ¢,: polarisation direction
— A: Analyzing power, average ~0.2 for pair production (kinematic

dependent) 2500

=i

v

Photon

Crnax

X 3000

2500 r

2000 r

Counts

1500 r

d 4 - 1000 :
5 : cmin
B 500 r |
B polarization:direction

0

1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Azimuthal angle (degree)

 Key to the measurement
— Azimuthal angular resolution: opening angle and momentum

— Anisotropy of the detector!

Xin Wu
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Detector Anisotropy (Modulation)

* Detector modulation because of bad ¢ resolution when particle goes in
parallel to the strip direction

C 0.09_' T | T 171 | T T T | T 11 | T T 11 | T T 71 T T 71 LR
% E— Unpolarised input Photon energy —E
© 0085 P P 100 MeV ~ ----true —reco J
- 0.07 500 MeV  ----true —reco
- 1000 MeV  ----true —reco I
0.05E — =
0.04 s =
0 1c] R SR O RO N N =
E= -1-._-.'-':==--- 3 -{-d== i iy i el ey e e S g ER DL A P X -:-
0.01— =
O: 1 1 | 11 1 1 | 1 1 1 | | 1 1 1 1 | 1 1 1 1 | 11 1 1 | 11 1 1 | | I:

-150 -100 -50 0 50 100 150
: : . oot D€

Detector modulation more important for higher electron

energy because of smaller opening angle
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Polarisation Detection Capabilit

C 0.07 T T I T I I T I I I T T I 8 0.07 I I T I T T I T I T T I T T T I T T
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Mission Concept

e Low earth orbit

* All-sky survey and pointed observations

— With possibility to rotate the payload to study systematic effect of
polarisation measurement

* Minimum lifetime three years
e Science data open to the world community
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Potential Collaboration Projects

 Many interesting and challenging topics for collaboration

Xin Wu

Conceptual Design: Payload performance and optimization
Permanent magnet: light weight, uniformity

SciFi tracking layer: automatic winding process, placement precision,
gluing process, light weight support, ...

Target-tracker: integration of layers on precise light weigh frame
Photon detector

* SiPM: high efficiency, low dark current, high density

* Other photon detection scheme?
FE ASIC: low power

Trigger, Readout and DAQ: low power consumption, low dead time,
robust trigger algorithm, flexibility for different observation mode

ACD: low weight, coverage, segmentation
On-ground data processing, science preparation: Science data center
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Conclusions

* PANGU is an unique opportunity for high energy
astrophysics. It will resolve and monitoring the sub-GeV sky

with unprecedented spatial resolution, separating diffuse
gamma-ray emission from point sources

— PANGU science is not “incremental science”, it will lead
to fundamental discoveries and understanding.

* PANGU is synergic with Gamma-400, DAMPE, HERD, CTA

and other ground-based and space detectors (e.g., radio,
optical, X-ray, TeV, gravitational wave experiments)

* Payload concept is innovative but the technology is ready

— The qualification of scintillating fiber tracker for space
application would be a major technological advance
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Thank You!

Welcome to join!
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