μAstrometry

Exploring planets in the solar neighbourhood

Alexis Brandeker
Stockholm Observatory, Sweden

Baoquan Li (NSSC, China)
Björn Jakobsson (OHB Sweden)
Alain Leger (IAS, France)
Fabien Malbet (IPAG, France)

Feng Tian (Tsinghua univ, China)
Bart Vandenbussche (KU Leuven, Belgium)
Jianfeng Zhou (Tsinghua univ, China)
Ding Chen (NSSC, China)
A mission to detect planets around the **200 nearest** solar-like stars by ultra-high precision astrometry (~μarcsec)

Fig. 1: A 3D representation of the F, G, K stars within 15 pc from us.
Astrometric signal
Why nearby systems?

- Best opportunities for high-S/N studies of planets
- Prime targets for direct detection and future *spectroscopic* missions (e.g. TPF, Darwin)
- Strongest astrometric signals for given planets:
 \[A \sim 3\mu\text{as} \left(\frac{M_p}{M_{\text{Earth}}} \right) \left(\frac{a}{\text{AU}} \right) \left(\frac{D}{\text{pc}} \right)^{-1} \]
Why astrometry?

• Transits searches will not find the nearest planets because of required geometry

• Radial velocity most sensitive to shorter period planets around “nice” stars

• The astrometric sensitivity increases with orbital period, up to the mission duration – ideal for planets in the “Habitable Zone”

• GAIA will find thousands of massive planets, but will saturate for nearby stars (V<6 mag)
Primary objectives

• Exhaustively detect *all* gas giants planets in the *Habitable Zone*, i.e. jupiters, saturns (down to 50 M_{Earth}), around our 200 nearest solar-like stars

• Down to 10 M_{Earth} around the nearest 25 stars

• For α Cen A & B, sensitivity down to Earth-mass!

• Complete characterisation of orbits (inclination, eccentricity, semi-major axis, planet mass)
μAstrometry

Detector spacecraft

Focal plane array (FOV~0.6°, Ø~15cm)

Young’s interference fringes

Focal length (~12m)

Telescope spacecraft

Sun shades

Telescope axis beam

Metrology

Off-axis parabolic mirror (D~30cm)
Characteristics

- Mirror module and focal plane array module
- Spacecraft separation 12m
- Precision formation flying (< 1 cm)
- 30 cm mirror with tip-tilt at 50 Hz
- Precision focal plane array metrology (<4×10⁻⁵ pix)
- L2 orbit, 3 year mission
Cost-effective: space-proven formation-flying with off-the-shelf hardware. Estimated cost for platform with modifications to suit μAstrometry: 20 M€
Precision metrology

- 3×3 array of CCDs developed for EUCLID
- Position accuracy of metrology system achieved in lab: <4×10^{-5} pixel
FOV~0.6°, Ø ~ 15cm

4096x4096 Euclid CCD

Moving Young’s Interference fringes

Science target
Telescope axis beam
Reference stars

Focal Plane
• \(\mu\)Astrometry has unique science capabilities not found in existing and planned exoplanet missions

• \(\mu\)Astrometry is proposed to build upon the existing and proven formation-flying platform PRISMA, providing a very cost-efficient solution

• The required metrology precision has been proven in the lab
Target star: HIP 27072

- Tycho2 reference star ID (Vmag)
- Best Tycho2 reference star per quadrant
Science questions

- How frequent are planetary systems in the HZ?
- What is the architecture of planetary systems in the HZ?
Figure 9: Control error observed by RF nav, GPS nav, and POD during the 1st session

$\sigma = 4 \text{ cm}$
Simulation \((50 \, M_{\text{Earth}}, 1.5 \, \text{AU}, 10 \, \text{pc}) \)
Targets distance distribution

- F stars
- G stars
- K stars

Number of stars vs. Distance to Sun (pc)