

Lutetia/ESA

Bernard Marty CRPG Univ. Lorraine F Patrick Michel Univ. Nice CNRS OCA F

On behalf of the MarcoPolo-R Science Team

M. Champenois

ESA CV M3 , 21 JAN. 2014

Science Study Team

M.A. Barucci (lead) P. Michel (co-lead)

J.R. Brucato E. Dotto P. Ehrenfreund I.A. Franchi S.F. Green L.-M. Lara B. Marty

Instrument PIs

T. Andert (RSE, D) M.A. Barucci (MaRIS, F) G. Cremonese (MaNAC, I) O. Groussin (THERMAP, F) J.-L. Josset (CUC, CH) E. Palomba (VISTA2, I)

ESA

D. Koschny (Study Scientist) D. Agnolon (Study Manager) J. Romstedt (Payload Manager) P. Martin, R. Chalex

M. Champenois

Cosmic Vision 2015-2025

Cosmic Vision

Interes Inter Agenty Agents spatials entropleane MarcoPolo-R addresses the scientific questions:

 What are the conditions for life and planetary formation?

2) How does the Solar System work?

Related issue with a Near-Earth Asteroid characterization:

Impact hazard and mitigation

MarcoPolo-R will:

 Return ~100g of sample for high precision lab analysis

 Characterize a primitive Near-Earth Asteroid at multiple scales

M. Champenois

ESA CV M3 , 21 JAN. 2014

Formation & Evolution of the Solar System

Hubble Space Telescope Orion Treasury Project Team

Beta Pictoris, European Southern Observatory

ESA CV M3 , 21 JAN. 2014

Formation & Evolution of the Solar System

ESA CV M3, 21 JAN. 2014

Formation & Evolution of the Solar System

Proto Sun

Small primitive bodies:record complex chemical and physical processes in the early Solar System

Planetesimals

Why sample return?

Sample return legacy

Hayabusa JAXA first sample returned from (evolved S-type) asteroid

European cosmochemistry

European teams at the forefront of sample return analysis

- Cosmochemistry : a science born in Europe
- Genesis: 2 of 4 scientific goals done by European labs
- Stardust: 1/3 labs were European in the Preliminary Examination Team

Analytical instruments used worldwide for ET samples designed and made in Europe

- Cameca (F): ion probes
- Nu Instruments (GB): mass spec.
- Thermofisher (D): mass spec.

tab².vt oñdim² eue trabes tellur byat² ac pluere e celovifu, retes motes. Et lua pub²fritærici fedi ipa .vű. yd² nouebus. ros ci² puios.cū cre i forma telte.aciefor rat Enbbeim. Sūrt retepopulat² bumu. re ad oñtationē ob m. z reges frácie.ob geita fuerūt. Et adt

Ensisheim meteorite fall, Shedel, 1493

nu instruments

SCIENT

The next two decades : exploration of asteroids

Hayabusa2 JAXA

OSIRIS-REX NASA

MarcoPolo-R ESA

- MarcoPolo-R will sample an unexplored region of the disk
- Prepare for human exploration of the Solar System

Returning this sample will keep Europe at the forefront of planetary science

The next two decades : exploration of asteroids

Hayabusa2 JAXA OSIRIS-REX NASA MarcoPolo-R ESA

1+1+1 >> 3 !

NASA committed to provide substantial contributions JAXA expressed interest

Returning this sample will keep Europe at the forefront of planetary science

Grand questions on the origin and evolution of the Solar System

1. What was the astrophysical setting of the birth of the Solar System ?

2. What is the origin and evolution of material in the early Solar System ?

3. What are the physical properties and evolution of the building blocks of terrestrial planets ?

4. How do volatiles and organics in primitive NEAs relate to the atmosphere and life on Earth ?

1. What was the astrophysical setting of the birth of the Solar System ?

Eros, NEAR (NASA/JHU/APL)

Fine-grained matrix hosting organics, volatiles

Low temperature

fine grained matrix

Eros, NEAR (NASA/JHU/APL)

Fine-grained matrix hosting organics, volatiles

Fine–grained matrix host grains of non-solar composition

Presolar diamond 2 nanometer scale transmission electron microscope image

2 nm

Credit : Univ. Chicago, MPI Mainz, Carnegie Inst. Wash

Pre-solar grains that survived Solar System formation

Presolar diamond 2 nanometer scale transmission electron microscope image

Credit : Univ; Chicago, MPI Mainz, Carnegie Inst. Wash

Insights into stellar nucleosynthesis

AGB V838 Monocerotis

Tycho's Nova NASA, ESA, HST Presolar grains provide information about nucleosynthesis and stellar evolution

- Isotopic signatures of rapid neutron and alpha captures
 - ➔ testing models of supernovae explosions (eg, ⁴⁴Ca)
- Insight into galactic evolution (eg AGB stars)
- Physico-chemical conditions and events in stellar envelopes (eg red giants)

Supernova 1987A

ALMA (ESO/NAOJ/NRAO) A. Angelich (NRAO/AUI/NSF)

Eta Carinae supernova remnant

NASA/MPIA/Calar Alto Obs., Oliver Krause et al.

What are the links between past stars and the Solar System ?

Supernova

Molecular Cloud

Proto-planetary disk

Primitive asteroids

AGB Star

Lab analysis

NASA, NEAR

ESA CV M3 , 21 JAN. 2014

Extinct radioactivities : key tracers of early Solar System events

Extinct radioactivities : key tracers of proto-solar events

Timing of Supernova explosions?

Solar System protoplanetary disk

ESA CV M3, 21 Jan. 2014

Time scales of nebular vs. planetary processes

- Radioisotope systems are susceptible to resetting during meteorite forming process
- Samples of primitive unaltered material should significantly improve chronology

ESA CV M3 , 21 JAN. 2014

3. What are the physical properties and evolution of the building blocks of terrestrial planets ?

Regolith: the lunar soil legacy

Eros, NEAR (NASA/JHU/APL)

A world in a grain : investigating asteroid processing in dust

A world in a grain : investigating asteroid processing in dust

4a. How do organics in primitive NEAs relate to life on Earth ?

The origin of life on Earth remains one of humankind's important unanswered questions

P. Sawyert Smithsonian

Early Earth's chemistry

Insights into cosmic carbon chemistry

Carbonaceous meteorites contain: macromolecular carbon, biomolecules, hydrocarbons, nanoglobules...

Interstellar and circumstellar regions : ~ 180 molecules are detected and many carbon allotropes

MarcoPolo-R will permit analysis of a unique sample of abiotic organic chemistry as it was in the Solar System shortly before the onset of life.

4b. How do volatiles (H, C, N...) in primitive NEAs relate to the atmosphere and oceans on Earth ?

- What are the compositions of asteroids ? Only measurements are from meteorites – possibility of terrestrial contamination
- Are comets/asteroids the origin of terrestrial water and atmosphere ?

A comet-asteroid continuum?

The computed water/rock ratio in meteorites (representative of asteroids?) is up to 1 (Clayton 1984, Young et al. 2002)

The observed water/rock ratio of Comet Tempel 1 is 1 (A'Hearn et al. 2005)

What is the difference between a water-rich asteroid & a dust-rich comet ?

ESA CV M3, 21 JAN. 2014

Why do we need to return samples when we have meteorites ? Atmospheric entry

More than 99% of material lost in the atmosphere; only the <1% strongest survives

Tsuchiyama et al. 2008

Carbonaceous chondrites are under-represented on Earth (5%) compared to the abundance of carbonaceous-type asteroids

Why do we need to return samples when we have meteorites ? Terrestrial contamination

TUNGUSKA (1908)

Why do we need to return samples when we have meteorites ?

Tagish LakeMost perfectly collectedmeteorite to date?

Collected within 5 days from frozen lake and kept at -20°C

→ terrestrial contamination

... results obtained for organics in meteorites may be questioned

MarcoPolo-R will:

 Return ~100g of sample for high precision lab analysis

 Characterize a primitive Near-Earth Asteroid at multiple scales

M. Champenois

ESA CV M3 , 21 JAN. 2014

Grand-Tack scenario: the asteroid belt contains primitive material formed in the outer Solar System (Walsh et al. 2011)

Saturn

Neptune

Uranus

sun

T (ky) = 0 T(kyr)=0 is 600 kyr before the end of the gas phase of the disk Jupiter is formed, Saturn is still growing

Jupiter

Grand-Tack scenario: the asteroid belt contains primitive material formed in the outer Solar System (Walsh et al. 2011)

Saturr

Jupiter

sun

Grand-Tack scenario: the asteroid belt contains primitive material formed in the outer Solar System (Walsh et al. 2011)

2/3 resonance

lupiter Saturn

sun

Grand-Tack scenario: the asteroid belt contains primitive material formed in the outer Solar System (Walsh et al. 2011)

Grand-Tack scenario: the asteroid belt contains primitive material formed in the outer Solar System (Walsh et al. 2011)

Jupiter

Saturn

Material originally formed beyond Saturn

Material originally formed between Sun and Jupiter

T (ky) = 600

From numerical simulations of asteroid disruptions: Most small asteroids (>200 m and < 100 km) are rubble piles Michel et al. 2001, 2003

METE Jupiter Plot prepared by the Minor Planet Center (2009 Oct.29). Main Belt Asteroids

Near-Earth Asteroids

Collisions, rubble piles, and dynamical instabilities: most NEAs comes from the main belt via well identified dynamical mechanisms (resonances)

Why a NEA?

 NEAs are the most accessible targets for primitive material sample return

Why a NEA?

- NEAs are the most accessible targets for primitive material sample return
- Some NEAs are potentially hazardous

© NASA

Impacts have both beneficial and destructive effects on the evolution of planetary biospheres

Explosion over Chelyabinsk on 15 Feb. 2013 (17 m-size object)

Meteor Crater (Arizona) Up to 100 m class object Age ~50,000 years

Mitigation strategies need better knowledge of NEA properties

ESA CV M3 , 21 JAN. 2014

Small body populations

A wide variety of physical & compositional properties

Small body populations

A wide variety of physical & compositional properties

Small body populations

A wide variety of physical & compositional properties

ESA CV M3 , 21 JAN. 2014

The attractive NEA 2008 EV5

(Potentially Hazardous Asteroid)

ESA CV M3 , 21 JAN. 2014

The attractive NEA 2008 EV5

(Potentially Hazardous Asteroid)

341843 (2008 EV5)

Known dynamical and physical properties:

Simple and short mission:
4.5 years in total with launches in 2022-2023

 Substantially simplifies the overall mission (e.g. propulsion, asteroid operations and GNC, power, thermal control, communications)

Earth Distance: 1.531 AU Sun Distance : 0.972 AU

Jan 21, 2014

Radar observations provide unparalleled knowledge of 2008 EV5

Busch et al. 2011

- 400 ± 50 metre oblate spheroid
- Period = 3.725±0.001h
- > Albedo: 0.10-0.12
- No evident large blocks (at 7.5 m-resolution)

2008 EV5 has a top shape, a ridge and a rotation period similar to that of binary's primaries

Binary 1999 KW₄ radar model, Ostro et al. 2005

YORP spinup sims, Walsh et al. 2008

Binary 2004 DC Taylor et al. 2008, ACM ESA CV M3 , 21 JAN. 2014

Single 2008EV5 Busch et al. 2011

Spectral type: belongs to the C complex

0.48-µm absorption band indicative of aqueous alteration

Parent body likely accreted in an unfractionated volatile rich region

Unique science value of 2008 EV5

CI meteorite Orgueil

Elemental composition identical to the Sun (except for the most volatile elements)

Meteorite richer in: water 20% organic matter 5 % Contains amino acids

Lodders 2003

Parent body likely accreted in an unfractionated volatile rich region

MP-R will allow us to access information on the conditions of accretion in distant regions of the Solar System ESA CV M3 , 21 JAN. 2014

Clarifying the asteroid-comet continuum

Active asteroids have been identified in the main asteroid belt

 Outgassing from Ceres has been detected by Herschel Space Observatory

(Kueppers et al.. 2014)

 Albedo of Ceres = 0.10 similar to 2008 EV5!

EV5 may be a transitional object

© Henry H. Hsieh

Formation of 2008 EV5

Disruption of a parent body and reaccumulations

Michel & Richardson 2013

Parent Body

Heavily altered

Regolith

NEA

JAXA

Unaltered primitive material

A NEA contains parent components that do not survive atmospheric entry

Regolith is a mixture of some or all components

Thermophysical modeling of 2008 EV5

Current mean distance to the Sun remains close to 1 AU: prevents high temperature excursions

The maximum temperature is up to 40 K lower at 1 cm depth

Thermal Inertia Γ of \approx 450 +/- 100 J s^{-1/2} K⁻¹m-²

Average grain size of the regolith may be of the order of 0.5 - 1 cm Delbo et al. 2013

ESA CV M3 , 21 JAN. 2014

2008 EV5 An ideal target for sample return

- It provides for the most exciting science, with signatures suggesting an unfractionated, volatile rich body
- It is a primitive asteroid with a moderate albedo, a class of object (possibly transitional to comets?) never visited before by a spacecraft
- Study of a Potentially Hazardous Asteroid is strategically important to space agencies and international institutions concerned with hazard and mitigation

Busch et al. 2011

2008 EV5 rises to the top of the asteroid charts!

Mission scenario

Science payload

Name	Туре
MaNAC	Narrow Angle Camera
CUC	Close-up Camera
MaRIS	Visible/near Infrared imaging Spectrometer
THERMAP	Mid-infrared spectro imager
RSE	Radio Science Experiment
VISTA-2	Thermo gravimetric measurement sensor

- Map the global properties, chemistry, and mineralogy to characterize the geologic and dynamic history
- Allows selection of the sampling site and provides context for the returned samples
- Low-risk payload:
 - > Total 33 kg, incl. all margins
 - Well-known design and operations

JAXA proposed contribution: a LIDAR as a support of GNC

ESA CV M3, 21 JAN. 2014

Anton Anton

Science payload

- Map the global properties, chemistry, and mineralogy to characterize the geologic and dynamic history
- Allows selection of the sampling site and provides context for the returned samples
- Low-risk payload:
 - Total 33 kg, incl. all margins
 - Well-known design and operations

JAXA proposed contribution: a LIDAR as a support of GNC ESA CV M3, 21 JAN. 2014

Sampling tool development

Top-level requirements:

- Get > 100 g sample in 3-5 seconds
- Compatible with a range of soil properties

Parallel sampling tool developments

- Brush-wheel at AVS, Spain
- Grab bucket at Selex-ES, Italy

Brush-wheel sampler concept, Credit: AVS

0-g test in 2014

NASA funded study to MarcoPolo-R

- Includes:
 - Enhanced sampling tool with a rock chipper to deal with consolidated rocks

Bucket sampler concept, Credit: Selex-ES

http://us-marcopolor.jhuapl.edu

ESA CV M3 , 21 JAN. 2014

Earth Re-entry Capsule and recovery

Heat shield prototype (Astrium Ltd)

- Fully passive capsule, ~ 500 s re-entry
- Landing ellipse knowledge ~ a few km
- Safest and lowest cost approach

ESA CV M3 , 21 JAN. 2014

Technologies

- Sample return from an asteroid is now feasible in Europe
- Major progress achieved in Europe in the last few years, e.g.:
 - Heat shield material technology
 - Sampling tool
 - Asteroid descent and touchdown guidance, navigation and control

Curation Facility

Samples rapidly transferred to a curation facility

- Canister opened in ultraclean environment
- Preliminary examination phase by a selected team
- Distribution to the community at large – Independent allocation committee
- Archiving for future generations

JAXA Curation Facility Cost ~10 Millions \$US

Asteroid sample return missions generate a tremendous public interest

MarcoPolo-R comics book

Translations in English, French, German, Italian, Spanish, Portuguese, Greek, Russian, Chinese

ESA CV M3 , 21 Jan. 2014

Asteroid sample return missions generate a tremendous public interest

A pacifier for future scientists! (found on internet)

MarcoPolo-R is on Facebook

MarcoPolo-R comics book Translations in English, French, German, Italian, Spanish, Portuguese, Greek, Russian, Chinese

ESA CV M3 , 21 JAN. 2014

A new ERA of Sample Return

MarcoPolo-R

- Distinct information about our Solar System history in a timely manner
- Development of a European curation facility and accompanying expertise for future sample return endeavours

Why MarcoPolo-R?

Allows us to unravel mysteries surrounding the birth and evolution of our Solar System

- Provides major breakthroughs in how organics in primitive NEAs relate to the origin of life on Earth
- Is relevant to a wide range of science fields

Astrophysics, Astrobiology, Cosmochemistry, Planetology, Impact Hazard Mitigation

- Provides invaluable samples for generations of scientists decades after its return
- Technology, industrial and outreach return

Why now?

Technically feasible mission with short duration, within M-class: 4.5 years with launch opportunities from 2022 to 2024

For Europe:

Contribution in a very timely and significant manner to the international sample return effort

Defines its position at the frontier of future sample return endeavours

A UNIQUE asteroid target accessible in 2022 – 2024: the most scientifically valuable and affordable Sample Return Mission for Europe in the next 2 decades

http://www.oca.eu/MarcoPolo-R/