

A High Resolution Gamma-Ray Space Telescope

Xin Wu¹ (European PI) and Jin Chang^{2*} (Chinese PI)

for the PANGU Collaboration

¹DPNC, University of Geneva, Switzerland

²Purple Mountain Observatory, CAS, China

Second Workshop on a CAS-ESA Joint Scientific Space Mission 23-24 Sept. 2014, Copenhagen

* Presentation at this Workshop given by Dr. Shijun Lei of PMO

Overview

PANGU: PAir-productioN Gamma-ray Unit

- Sub-GeV γ-ray telescope with unprecedented angular resolution
 - -~ Energy range of 10 MeV 1 GeV with \lesssim 1° point spread function at 100 MeV
 - With polarization measurement capability
- Wide range of topics of galactic and extragalactic astronomy and fundamental physics
 - Complementary to the world-wide drive for a next generation Compton telescope (1-100 MeV)
- Innovative payload concept for a small mission
 - Thin target material (SciFi or Si) with magnetic spectrometer

An unique instrument to open up a frequency window that has never been explored with great precision

Outline of the Presentation

- The PANGU Collaboration
- Scientific Objectives
- Suggested Payload
- Mission Concept
- Potential Collaboration Projects
- Conclusions

The PANGU Collaboration

- A growing international collaboration from China, Europe and US
 - 64 members from 21 Chinese institutes (including HK and Taiwan)
 - 18 members from 11 European institutes and 6 countries
 - Switzerland, Italy, Germany, France, Netherlands, Poland
 - 4 members from 4 US institutes

Strong interest and broad support from the Chinese and European astrophysics communities

Chinese Collaborators (1)

- 1. Purple Mountain Observatory, CAS (12) (DAMPE, ASO-S)
 - 常进(Jin Chang, Chinese PI), 范一中(Yizhong Fang), 伍健(Jian Wu), 刘四明(Siming Liu), 吴雪峰(Xuefeng Wu), 张水乃(Shuinai Zhang), 董铁矿(Tiekuang Dong), 藏京京 (Jingjing Zang), 韦大明(Daming Wei), 郭建华(Jianhua Guo), 冯磊(Lei Feng), 雷世俊 (Shijun Lei)
- 2. Institute of High Energy Physics, CAS (11)) (HXMT, POLAR, DAMPE, SVOM, HERD, LHAASO)
 - 王焕玉(Huanyu Wang), 吴伯冰(Bobing Wu), 毕效军(Xiaojun Bi), 彭文溪(Wenxi Peng), 张飞(Fei Zhang), 崔兴柱(Xingzhu Cui), 胡红波(Hongbo Hu), 袁强(Qiang Yuan), 陈松战(Songzhan Chen), 郭义庆(Yiking Guo), 王建民(Jianmin Wang)
- 3. University of Science and Technology of China (7) (DAMPE)
 - 赵政国(Zhengguo Zhao), 汪晓莲(Xiaolian Wang), 许咨宗(Zizong Xu), 黄光顺 (Guangshun Huang), 张云龙(Yunlong Zhang), 封长青(Changqing Feng), 袁业飞(Yefei Yuan)
- 4. Nanjing University (5)
 - 陈阳(Yang Chen), 戴子高(Zigao Dai), 王祥玉(Xiangyu Wang), 李向东(Xiangdong Li),
 李致远(Ziyuan Li)
- 5. National Astronomical Observatiories, CAS (4) (FAST, CSST, Einstein Probe)
 - 李菂(Di Li), 田文武(Wenwu Tian), 陈学雷(Xuelei Chen), , 苟利军(Lijun Gou)
- 6. Peking University/Kavli Institute for Astronomy and Astrophysics (4)
 - **黎卓(Zuo Li)**, 闫**慧荣(Huirong Yan), 李立新(Lixin Li)**, 刘晓为(Xiaowei Liu)

Chinese Collaborators (2)

- 7. Yunnan Astronomical Observatiory, CAS (2)
 - 白金明(Jinming Bai), 赵晓红(Xiaohong Zhao)
- 8. Shanghai Astronomical Observatory (1)
 - 袁峰(Feng Yuan)
- 9. Shanghai Jiaotong University (2)
 - 倪凯旋(Kaixuan Ni), 徐海光(Haiguang Xu)
- 10. Guangzhou University (1)
 - 樊军辉(Junhui Fan)
- 11. Guangxi University (1)
 - 梁恩维(Enwei Liang)
- 12. Hong Kong University (2)
 - K.S. Cheng, P. Parkinson
- 13. National Tsing Hua University (2)
 - P.H Thomas Tam, A. Kong
- 14. Sun Yat-sen University (1)
 - 何振辉(Zhenhui He)
- 15. Central China Normal University (1)
 - 俞云伟(Yunwei Yu)

Chinese Collaborators (3)

- 16. China University of Geosciences (1)
 - 吴娟(Juan Wu)
- 17. Huazhong University of Science and Technology (3)
 - 雷卫华(Weihua Lei), 邹远川(Yuanchuan Zhou), 吴庆文(Qingwen Wu)
- 18. Yunnan University (1)
 - 张力 (Li Zhang)
- 19. Xinjiang Astronomical Observatory, CAS (1)
 - 王娜 (Na Wang)
- 20. Xiamen University (1)
 - 王俊峰 (Junfeng Wang)
- 21. Beijing Normal University (1)
 - 朱宗宏 (Zonghong Zhu)

Supporter/advisory list:

 毛淑德 (Shude Mao, NAOC), 陶嘉琳(Charling Tao, THU), 李惕碚(Tipei Li, HXMT PI, THU), 卢炬甫(Jufu Lu, Xiamen Univ.), 曹臻(Zhen Cao, LHASSO PI, IHEP), and many more!

European and US Collaborators (1)

- 1. Department of Nuclear and Particle Physics, University of Geneva, Switzerland (5)
 - Xin Wu (European PI), Martin Pohl, Alessandro Bravar, Silvio Orsi, Philippe Azzarello
- 2. INTEGRAL Science Data Center, University of Geneva, Switzerland (1)
 - Roland Walter
- 3. University of Perugia and INFN Perugia, Italy (3)
 - Giovanni Ambrosi, Bruna Bertucci, Gino Tosti
- 4. INFN Bari, Italy (2)
 - Nicola Mazziotta, Fabio Gargano
- 5. ICTP, Italy (1)
 - Gabrijela Zaharijas
- 6. Institut de Recherche en Astrophysique et Planétologie, Toulouse, France (1)
 - Jürgen Knödelseder
- 7. Université Paris Diderot & CEA Saclay, France (1)
 - Isabelle Grenier
- 8. CENBG Bordeaux-Gradignan, France (1)
 - Xian Hou
- 9. GRAPPA, Netherlands (1)
 - Christoph Weniger

European and US Collaborators (2)

- 10. MPI, Germany (1)
 - Xiaoyuan Huang
- 11. CAMK Warsaw, Poland (1)
 - Andrzej Zdziarski
- 12. Massachusetts Institute of Technology, U.S.A. (1)
 - Meng Su
- 13. University of Las Vegas, U.S.A. (1)
 - Bin Zhang
- 14. University of Massachusetts, U.S.A (1)
 - Daniel Wang
- 15. Purdue University, U.S.A (1)
 - Wei Cui

Supporter/advisory list:

• Lars Bergström (Stockholm University, OKC), Andrew Strong (MPA), Diego F. Torres (IEEC-CSIC), and many more!

Conference presentations of PANGU since first ESA-CAS workshop: strong interest from community

- 10th INTEGRAL Workshop
- SPIE Astronomical Telescopes + Instrumentation 2014
- International Conference on Particle Physics and Cosmology (COSMO-14)
- Debates on the Nature of Dark Matter (Sackler meeting 2014)
- High Energy Astrophysics Division 2014 Meeting
- Identification of Dark Matter and TeV Particle and Astrophysics
- Cosmic Frontier 2014 (Beijing)
- Zeldovich-100 International Conference
- 224th American Astronomy Society Meeting
- APS Physics April Meeting 2014
- 2014 IEEE Nuclear Science Symposium (November)

Fermi-LAT (2008-2018?) (>1GeV) ~> 3000 gamma-ray sources (~15 yrs after EGRET) **Space-borne gamma-ray instruments on the** timescale of 2008+15 ~2020 (post-Fermi era)? 11

Sub-GeV is NOT improved by any future mission

- Planned instruments focus on "high energy end" of cosmic-ray/ gamma-ray spectrum (DAMPE, HERD, Gamma-400)
 - ~100 GeV (gamma-ray)
 - ~TeV (electron)
 - ~PeV (proton/nucleus)

NO planned missions to improve ~<GeV observations, a poorly covered energy domain

PANGU can fill this gap with a small mission!

What does PANGU mean to us?

PAir productioN Gamma-ray Unit

PANoramic Gamma-ray Unit

Polarized ANd Gamma-ray Universe

CAS-ESA workshop, 23-24/09/14

般

Scientific Objectives: Highlights

- Origin and acceleration of high energy cosmic rays
- Galactic and isotropic diffuse gamma-ray emission (Fermi Bubbles)
- Indirect dark matter search
- First detection of polarization at sub-GeV
- Full-sky monitoring of a variety of soft gamma-ray transients
- Baryon asymmetry in early universe / Lorentz invariance
- Solar flares / Terrestrial Gamma-Ray Flashes
- Synergic multi-energy campaign with future gamma-ray telescopes and other wavelength space/ground telescopes

PANGU: All-sky explorer for the 10 MeV – 1 GeV Universe

A variety of sources, big discovery space!

PANGU is going to extend the spectrum of these sources to 10 MeV, and find new soft spectrum gamma-ray sources!

~1/3 are "unassociated" sources with unknown nature!

Nolan et al. (2012), ApJ, 199, 3115

Supernovae Remnants and Particle Acceleration

Science's Top 10 Breakthroughs of 2013!

- **PANGU will** distinguish two scenarios without ambiguity
- **PANGU will detect** more supernova remnants with ~5 times better PSF!

W44 Fermi

Fermi Bubbles --- Hadronic v.s. Leptonic

2014 Rossi Prize!

- Gigantic pair of bubbles in gamma-ray
 - Unexpected discovery, measurement at < GeV is systematics dominated
 - 100 MeV to GeV range is crucial to distinguish leptonic origin of the gamma rays from hadronic origin

Systematics limited (NOT counts!)

Fermi data reveal giant gamma-ray bubbles

Measurement of < GeV cutoff is the key to infer the cosmic ray electron/ proton spectrum at low energy

Origin of cosmic ray Cutoff within the Fermi bubbles is unclear.

PANGU is a GRB Monitor

Fermi -> PANGU (2021) Swift -> SVOM (2021) PANGU: lower energy, better localization, larger field of view! (> tens of GRBs per year)

Blazars and Origin of the UHECRs

Standard hypothesis: shocks in hadronic jets of Active Galactic Nuclei

- Jet spectra can be reproduced by leptonic or hadronic models
 - Only hadronic models predict neutrinos and high polarisation in sub GeV range.

PANGU observations of blazars flares

Unique Rule in Low Mass Dark Matter Search

No missions are sensitive to PANGU's energy range --- unique in dark matter search, chance for discovery

Search for Dark Matter Gamma-ray Signature from the Milky Way

10

2

Are we seeing dark matter from the central of the Galaxy? 0.5-1 GeV residual 1-2 GeV residual 20 20 10 15 ð 10 counts/cm²/s/s 10 0 5 -10 -20 -20 10 -10 -20 20 10 0 -10 -20 20 0 2-5 GeV residual 5-20 GeV residual

< GeV spectrum is key to

0.5 1.0 5.0 10.0 50.0 F (GeV)
Fit well with 35 GeV DM WIMP -> bbar

Resolving the Galactic Center region in sub GeV gamma-rays: the central BH region, GeV and TeV sources, nebulae, compact sources, SNRs, and diffuse emission

Daylan et al. (2014)

20

10

0

-10

-20 20

Pulsars: Ideal Targets for PANGU

Millisecond pulsars (MSP) peaked at ~GeV IIII Unique for PANGU!

~5 better PSF ➡ ~30 lower background to search pulsations

Fermi γ-ray pulsar distribution: contamination from disk is important (small PSF required!)

Gamma-ray observations can help to disentangle the geometry of pulsar magnetospheres and emission regions

Time Domain γ-ray Astronomy with Big FoV

Fermi-LAT already found >200 flaring sources on weekly timescales.

Variable source populations:

- Characterize AGN populations properties
- New Galactic gamma-ray transient population: Novae
- Other Galactic sources expected with known binaries and AGN density.

Gamma-ray Emission from Solar Flares

LAT 1 day all sky data >100 MeV

Bad PSF, cannot resolve the Sun information on particle acceleration cite

Bright solar flares have been detected by Fermi

- 1000 time the flux of the steady Sun
- 100 times the flux of Vela
- 50 times the Crab flare
- High energy emission (>10 MeV, up to 4 GeV) lasts for ~20 hours
- Softening of the spectrum with time

PANGU can resolve the flare in γ-ray!

Earth Studies Objectives of PANGU: Terrestrial Gamma-ray Flashes

 TGFs are Intense (sub-)millisecond flashes of MeV gamma rays from thunderstorms

 Power in MeV flash comparable to power in lightning bolt

 Thunderstorms are most powerful natural terrestrial particle accelerator

• Accelerator at ~10-15 km altitude, accessible by aircraft

■ PANGU will measure the >10 MeV spectrum with higher resolution imaging (better rejection of earth limb background).

We plan to host a TGF archive which enables correlating high-energy TGFs with local and global meteorological data, unique data to atmospheric chemistry, local climate, and climate change Issues.

Sub-GeV Gamma Ray Detection

- The science case for high resolution (≤ 1°) gamma-ray space telescope around 100 MeV is very compelling
 - But it has yet to be realized, best instrument up to now is FERMI

Detection principle:

How Fermi-LAT detects gamma-ray photons

Converted electron/positron pair carries information about the direction, energy and polarization of the **gamma** photon

Possible Detector Concepts

- To achieve ≤1° angular resolution passive material should be minimized and active detector should be thin or low density
 - To increase effective area (mass!) needs many layers or large volume
- Concepts for high resolution gamma pair telescope studied before
 - Low density gas TPC: HARPO, AdEPT (5-200 MeV), ...
 - Potentially very good resolution
 - Need large pressure vessels (AdEPT: 6×1m³ vessels for 20 kg gas)
 - All-silicon, many optimized as Compton telescope (with calorimeter):
 - MEGA/GRM: Double-sided SSD, distance 5 mm, 500 μm thick
 - CAPSiTT: Double-sided SSD, distance 1 cm, 2 mm thick
 - TIGRE: Double-sided SSD, distance 1.52 cm, 300 µm thick
 - Gamma-Light: single-sided, distance 1 cm, 400 µm thick
 - Scintillating fiber
 - Previous concepts with converter: SIFTER, FiberGLAST
 - PANGU: a new all-Si tracker or all-fiber light weight concept

Compton vs Pair Telescope

- Below 10 MeV, Compton scattering dominates
 - Detection rely on multiple Compton scattering -> need calorimeter

- PANGU: dedicated pair telescope with thin tracking layers and no converter
 - Push the "thinness" to the limit for best PSF!

X. Wu/J. Chang• Silicon SSD of 150µm, or ribbon of 3-4 layers of ϕ =250µm fiber ³³

PSF Comparison with Fermi

Acceptance

Acceptance Compared to Fermi

37

Point Spread Functions vs. Type

Averaging over all isotropic incidence angles within acceptance

Point Spread Functions vs Incidence

Point Spread Functions vs Incidence

Angular Relative Acceptance

Large FOV for both tracks in target (limited energy measurement)

Angular Relative Effective Area

How about the energy measurement?

- Standard way is to use a calorimeter under the tracker
 - Eg. AGILE mini-calorimeter, CsI, 1.5X₀, 37.5x37.5x3 cm³, ~30 kg total, ~20kg active
 - Limited energy resolution ~70% at 100 MeV because of leakage
 - For PANGU (50x50x3 cm³) would need ~53 kg for calorimeter
 - Eg. GAMMA-LIGHT calorimeter (50x50x4.5 cm³) \Rightarrow ~80 kg total
 - Calorimeter not optimal if payload < 100 kg
- The PANGU approach: magnetic spectrometer with permanent magnet
 - Magnet below the tracker-target (light-weight configuration)
 - Magnet can be independently optimized
 - But limited FOV
 - Complication
 - Need to minimize stray field and shield sensitive satellite equipment

PANGU Magnetic Spectrometer

- Momentum measurement through bending angle
 - $\theta = 0.3 \text{ LB/p [mm T MeV}^{-1}] = 3/p \text{ radian (p in MeV)}$
 - 3 mrad (0.17°) for 1 GeV, 30 mrad (1.7°) for 100 MeV
 - $\Delta p/p = p/(0.3 \text{ LB}) \Delta \theta = (p/3) \Delta \theta$ (p in MeV)
 - $\Delta\theta$ dominated by tracking resolution (σ_x/d) at high energy, and by multiple scattering at low energy

Permanent Magnet

- Halbach array with NdFeB magnet
 - $B = B_0 V_f \ln(r_2/r_1)$
 - B₀ is the remnant field, assume 1.5 T (strongest available today)
 - V_f is the the filling factor, assume 0.9 0.95
 - r₁ is the inner radius, assume 25 cm
 - For B = 0.1 T, $r_2 = r_1 \exp(0.1/(1.5*0.9)) = 26.9 \text{ cm}$
 - Magnet height 10 cm
 - For B = 0.1 T, magnet volume = 10x(26.9²-25²)π = 3098 cm³
 - Density of magnet = 7.5 g/cm³
 - Weight of magnet = 3098 x 0.0075 x 0.9 = 21 kg
 - It is possible to have 0.1 T with <30kg</p>
- A square magnet (50 cm x 50 cm) would be heavier and less uniform
- Best to operate on low temperature, also fro SiPM

Energy Resolution

Raw width ~20-30% for 100MeV – 1GeV, bias should be corrected, eg. with energy measured in tracker

The Target-Tracker

- Possible layout
 - x-y double layers with 6mm inter-distance, 50 double layers
- Tracking layer with ~0.3% X₀ total (requirement)
 - Silicon: 2 single sided SSD of 150 μm each
 - SciFi: 2 layers of ~0.65 mm each (Polystyrene equivalent), each layer formed by a stack of 3 layers of ø=250 μm fibers, readout by SiPM
- Total tracker active material
 - Silicon: ~17kg (silicon density ~2.33 g/cm³)
 - Fiber: ~25kg (polystyrene density ~0.9 g/cm³)
- Both need support substrate
 - Probably more for Si: biasing, bonding, more fragile
- Baseline: ~50kg for fiber/silicon, support structure, FE electronics
 - Plus: 30 kg for magnet, 20 kg for the rest (ACD, DAQ, ...)
 - \Rightarrow total weight ~100 kg
- Can be re-optimized to 60kg with reduced acceptance if limit is strict!

PANGU-Si vs PANGU-Fi

- Silicon and fibers trackers are both viable technologies
 - Challenges are mainly engineering: optimal use of the limited weight (ultra-light module) and power budgets (low power ASICs)
- Silicon has been successfully used in similar space missions
 - Fermi, AGILE, Pamela, AMS-02, ...

Mu3e module

- Fiber is cheaper, less fragile, more flexible geometry, but the technologies of scintillating photon detector (SiPM) and readout ASICs are newer
 - Recent developments in high energy physics, eg. LHCb, Mu3e, ...
 - Also in space: balloon prototype PERDaix of PEBS
 - Position resolution ~70 μm can be achieved

 Image: Second state sta

Power Consumption

- Total number of readout channels of 50 double-layers in the target + 6 layers in the lower tracker, with 250 μm readout pitch, is ~300k channels
 - Si strip detector pitch ~250 μm , fibers can be readout by SiPM of 250 μm pitch
- Current Si readout ASIC consumes ~0.2mW/channel
 - Push for ~0.1mW/channel with some R&D
 - Similar for readout ASIC for SiPM
 - Total ASIC power ~30-60 W
- Total power consumption of payload 60-90 W
 - Including CPU for online selection

Polarisation Measurement

$$d\sigma/d\varphi = 2\pi\sigma_0 \left(1 + P_{\gamma} \cdot A \cdot \cos(2\varphi - 2\varphi_{pol})\right)$$

- Azimuthal angle distribution in the plane perpendicular to the γ direction
 - P_{γ} : degree of polarisation; ϕ_{pol} : polarisation direction
 - A: Analyzing power, ~0.2 for pair production but kinematic dependent

- Keys to the measurement
 - Azimuthal angular resolution
 - transverse track length and multiple scattering
- Intrinsic modulation of the detector! X. Wu/J. Chang

Detector Intrinsic Modulation

- Detector intrinsic modulation because of bad φ resolution when particle goes in parallel to the strip direction

opening angle \Rightarrow shorter transverse track length

Intrinsic Modulation, Leading Track

- Electron cannot be identified If no tracks reached spectrometer
 - Use leading track

Input Modulation, Electron

– Need reliable simulation code for polarised pair production X. Wu/J. Chang
CAS-ESA workshop, 23-24/09/14

٠

Input Modulation, Leading Track

Need reliable simulation code for polarised pair production
 X. Wu/J. Chang
 CAS-ESA workshop, 23-24/09/14

ullet

Satellite Platform and Mission Concept

- Satellite platform
 - Temperature stability
 - Low temperature preferred for magnet and SiPM
 - Magnetic shielding
 - For satellite navigation system, not for payload
 - Pointing stability and precision
 - ~0.1° is sufficient
- Mission concept
 - Low earth orbit
 - All-sky survey and pointed observations
 - With possibility to rotate the payload to study systematic effect of polarisation measurement
 - GRB fast alert downlink
 - Minimum lifetime three years
 - Science data open to the world community

Potential Collaboration Projects

- Many interesting and challenging topics for collaboration
 - Science study: Science potential of a high resolution detector
 - Conceptual Design: Payload performance and optimization
 - Permanent magnet: light weight, uniformity
 - SciFi tracking layer: automatic winding process, placement precision, gluing process, light weight support, ...
 - Target-tracker: integration of layers on precise light weigh frame
 - Photon detector
 - SiPM: high efficiency, low dark current, high density
 - Other photon detection scheme?
 - FE ASIC: low power, trigger, timing
 - Trigger, Readout and DAQ: low power consumption, low dead time, robust trigger algorithm, flexibility for different observation mode
 - ACD: low weight, coverage, segmentation

- On-ground data processing, science preparation: Science data center X. Wu/J. Chang CAS-ESA workshop, 23-24/09/14 56

Conclusions

- PANGU is an *unique opportunity* for high energy astrophysics. It will resolve and monitoring the sub-GeV sky with unprecedented spatial resolution, separating diffuse gamma-ray emission from point sources
 - PANGU science is not "incremental science", it will lead to fundamental discoveries and understanding.
- PANGU is synergic with DAMPE, HERD, CTA, Gamma-400 and other ground-based and space detectors (e.g., radio, optical, X-ray, TeV, gravitational wave experiments)
- Payload concept is innovative but the technology is ready
 - TRL6-7 for silicon tracker
 - TRL5 for scintillating fiber tracker