The MESSIER orbiter A European-Chinese mission for unveiling galaxy formation

### David Valls-Gabaud Observatoire de Paris

Wang Xin SITP



on behalf of the MESSIER consortium





ESA-CAS workshop for a joint mission Copenhagen 2014 September 23



Europe PI : David Valls-Gabaud China PI : Jing Yipeng (SJTU, science) + Wei Jianyan (NAOC, technology)

#### Core team

Paris Saclay Strasbourg Marseille Heidelberg Munich Stockholm Geneva ETHZ Cambridge UCL Durham IAC *Caltech Arizona JHU Columbia* 

IHEPNAOCSITPKIAA/PKUJiaotongSHAOPMOTsinghua(TBC)

Interested parties: >190 researchers over 30 institutes

#### Standard cosmological model ACDM

#### ... initial conditions

#### Standard cosmological model $\Lambda CDM$

#### ... from initial conditions





## Hierarchical bottom-up process of accretion/merging of cold dark matter (sub)haloes



De Lucia & Blaizot (2007) MNRAS 375, 2

## Simulations vs Observations



Image credit: The Millennium Run Observatory (R.Overzier, G.Lemson, et al. 2012)



40  $h^{-1}$  Mpc  $100 h^{-1}$  Mpc  $15 h^{-1}$ Mpc mildly nonlinear 2 hnonlinear <sup>1</sup> Mpc  $0.5 \ h^{-1}\,{
m Mpc}$ 

linear

and

highly

Boylan-Kolchin et al. (2009) MNRAS 398, 1150

# MESSIER's two driving science cases

To critically test the  $\Lambda$ CDM paradigm on *mildy*- and *non-linear* scales

## How do galaxies form by accretion?

Anisotropic accretion from filaments? Mergers? Discs of satellites? Missing satellites ? Halo profiles?

What are the properties of the cosmic web ?
 Does it exist at all? Do baryons follow dark matter?
 Reservoir of missing baryons? Shock heated? Ionisation?

ESA Cosmic Vision:4.2 The universe taking shapeNSF Decadal Survey:How do cosmic structures form and evolve ?Europe ASTRONET:3.2 Cosmic web3.4 How were galaxies assembled?

#### Hierarchical formation process through accretion and merging of dark matter haloes



#### Northern Sky

#### Streams in the Galactic halo



#### Southern Sky

TRIANGULUM STREAM

SAGITTARIUS STREAM

SDSS DR8 / Bonaca, Giguere, Geha

Can we detect the fossil record of past accretion events beyond our Galaxy ?

## Driving science case #1

## Key prediction of the $\Lambda CDM$ paradigm the (over?) abundance of dwarf satellites

Canes Venatici I



## Tension in the CDM paradigm ?

#### Self-Interacting Dark Matter

#### Cold Dark Matter

#### Warm Dark Matter



Brooks et al. (2014)

All newly-discovered satellites of the Galaxy and Andromeda are at the limit of surface brightness reachable by counting (resolved) stars

LeoT

And IV



Ground-based

HST

# The case of Segue I



#### Discovery rate of Milky Way satellites





Ricotti (2011)





Font et al. (2008)

Most predicted structures lie at surface brigtness levels below 30 mag arcsec<sup>-2</sup>

Unreachable from the ground

Cooper et al. (2013)





[...] galaxies are like icebergs and what is seen above the sky background may be no reliable measure of what lies underneath.

Michael Disney (1976)

#### The unprobed realm of the low surface brightness universe

mu(V) < 21.5

Mihos et al. (2005)

Limited by systematics

- sky variability
- straylight
- flat field accuracy
- extended PSF wings

#### Surface brightness completeness issues



#### NGC 4013 *d*=18 Mpc



51 cm Richtey-Chrétien
CCD SBIG 27' 0.45"/pixel
Exposure time: 11 hours
SB ≈29 mag arcsec<sup>-2</sup>
Amateurs with scopes f/D=8-10

#### NGC 5907 *d*=14 Mpc



#### Martinez Delgado et al. (2008-2010)

#### The paradigmatic case of NGC 5907



0.5m f/8.1 Martinez Delgado et al. 2008 SDSS Miskolczi et al. 2011 CFHT Ibata et al. 2011

Key points:SB  $\propto$  D<sup>2</sup> / F<sup>2</sup>  $\propto$  (D/F)<sup>2</sup>f/2 is 100x faster than f/20PSF wings

#### ATLAS-3D

#### Elliptical galaxies

#### CFHT LSB-Elixir



#### The Dragonfly camera



#### Van Dokkum & Abraham (2014)

Current instrumentation is not adequate

Signal received by an unresolved source:

$$F_{
m point} \propto A \ \epsilon \ t_{exp} \ 10^{-0.4 \ m_{tot}}$$

 $\rightarrow$  drives telescopes with large diameters and large focal lengths

Surface brightness received by a extended source:

$$SB_{
m extended} \propto \left(rac{D}{f}
ight)^2 \ \epsilon \ t_{exp} \ s_{pix}^2 \ N_{pix} \ 10^{-0.4\,\mu}$$

 $\rightarrow$  requires fast optics with minimal (f/D) ratio

 $\rightarrow$  drives small D telescopes



# Formation history of galactic haloes



Is there any evidence for accretion by filaments ?

## Driving science case #2

The Cosmic Web

Strongest in Lyman  $\alpha$  by ~1000 x



Bertone + Schaye (2012) MNRAS 419, 780

#### Low surface brightness Lyman- $\alpha$ emitters



VLT 92 hours exposure

Rauch *et al.* (2008) ApJ 681,856

#### Extended Lyman- $\alpha$ emission from z = 2.65 star-forming galaxies



Lyman-α

92 UV-selected galaxies with  $\langle z \rangle = 2.65$ 

Extended haloes to  $\sim 80$  kpc (when stacked)

SB ~  $10^{-19}$  erg s<sup>-1</sup> cm<sup>-2</sup> arcsec<sup>-2</sup>

900 hours integration at 8-10m class telescopes

Lyman-α cooling? Fluorescence by ionising radiation? Scattering from circumgalactic gas?



Steidel et al. (2011) ApJ 736, 760

# The MESSIER satellite

1. Science rationale2. Technical design





## First catalogue of diffuse objects

Messier (1771) Mem. Acad. Sci. Paris

no gave R. Collins, Lageries to Decense do M. He

Le Cesale est le hand du Carl que anna' le change de la humany



| 耀北三八〇二二三北三八五八四加加四九<br>耀北四九〇六二二三北三八五八四加<br>耀虎大五六二〇之北三二五〇四加二〇<br>耀虎大二二五〇之北三三二〇四四加一四九<br>耀虎大二二五〇九八四一六四〇加一四九<br>耀虎大二二五〇九十三八二五〇四加一四九<br>梁虎大二二五〇九十三八二五〇四加一四九<br>梁虎大二二五〇九十三八二五〇四加一四九<br>一二五〇九十三八二五〇四加一四九<br>一二五〇九十三八二五〇四加一四九<br>一二五〇九十三八二五〇四加一四九<br>一二五〇九十三八二五〇四加一四九<br>一二五〇九十三八二五〇四加一四九<br>一二五〇九十三八二五〇四加一四九<br>二〇二二二〇十二二二二二二二二二二二二二二<br>二二二二二二二二二二二二二二二二 | とうこうこう | 少丞北増一                     | 鳥喙五                     | 閣道南增一                | 火鳥七          | 奎宿北増ニ十一         | 閣道西增二                   | 奎宿北増二十二                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------|-------------------------|----------------------|--------------|-----------------|-------------------------|-------------------------|
| 九五二二二五二二五二二五二二五二二二二二二二二二二二二二二二二二二二二二二二                                                                                                                                                                                                                                                                                                             | 秋定義家考成 | 緯北大三三四五二北五·經成大二三四五二九五二百三· | 韓南 ホホ五との九年 五經成 ところの九子 二 | 緯北四五三七一八北三經成 七一九二八成二 | 緯南四ンニ九五四南四   | 緯北三九五二の之北三經成 シー | 輝北四九 ンテニー北四經成 六五 ンニー四成三 | 緯北三八〇二二三北三經一戊一 六四九五〇 戊二 |
| の一の一の三の五の〇の一                                                                                                                                                                                                                                                                                                                                       |        | 九五三四三加 二〇〇八               | 九四六五三 減 二つ の八           | ハー九00加 ニロシン          | 五一四一六 减 二〇〇九 | 三二〇四四加 二〇〇八     | 一三五五〇加 二〇〇八九五五〇四加 四九四九  | ーユーション加 二〇八〇七           |

The Yixiangkaocheng catalogue Ignaz Kögler, SJ 1756 (publ. 1774) 3083 objects 2848 stars **13** nebulosities

Ahn (2012) MNRAS, 422, 913
# Top-level design requirements

- 2°x4° (lifetime of satellite) FOV Focal ratio f/2 (200x better than HST) (minimal PSF wings) Central obscuration none I" per pixel (matches ground) Spatial resolution < 0.5 nm (UV to optical) Roughness
- Flat field rms
- Distortion
- Diameter

< 0.5 nm (UV to optical) < 0.0025% (TDI / drift scan) < 0.5% in one direction 50 cm (set by platform)



#### Obstruction by secondary mirrors yields very extended and anisotropic PSFs





⇒ zero obstruction is required for proper LSB photometry

#### Key additional requirements for MESSIER : — flat(ish) focal plane (Gaia-like?) — no lenses (avoid Čerenkov radiation)



Current solution

#### TMA

unobscured, off-axis easy baffling flat focal plane f/2 4° x 2° TRL 9 (optics/FP)



Stringent quality control of the 3 mirrors, from 200 nm to 900 nm UV coatings reach 80% reflexivity

#### Importance of the stability and of the wings of the PSF



Extended galactic red haloes ??

Zibetti, White + Brinkmann (2004)



#### Going into space: issues and challenges





No sky variability but many foregrounds:

- zodiacal light (variable)
- stray light contamination
- geocoronal/airglow emission
- optical/UV emission from Galactic dust (cirrus)



### Requirement for filters



## Focal plane configuration

8 x 2 independent CCD controllers in drift-scan modeQE of each detector optimised for each filter (>85%)Highly efficient: no moving parts, passive cooling



2°

## Expected performances - Optical bands Simulated MESSIER images of a galaxy (M31) at 15 Mpc





10 ksec 5 kpc × 5 kpc 100 ksec | kpc × | kpc (|4" × |4")

## Expected performances - 1 Optical bands Simulated MESSIER images of a galaxy (M31) at 15 Mpc





I Msec I kpc × I kpc

10 Msec I kpc × I kpc

#### Expected performances - II UV bands



M Hayes

#### Expected performances - II UV bands



Over  $3 \times 10^6$  galaxies at z=0.65 detected in Ly $\alpha$  with S/N>30

#### What is the nature of $Ly\alpha$ blobs ?

# Photoionisation by a central AGNCooling radiationShocks by galactic outflowsResonant scattering from sources



27 hours at VLT

Cantalupo, Lilly & Haehnelt (2012)

Fluorescent Ly $\alpha$  emission of the circum-galactic medium around a QSO at z=2.4

#### Expected performances - II UV bands

Signal / Noise for simulated MESSIER images of the cosmic web



#### Key science issues (free by-products)

- KSI What is the luminosity function of galaxies ?
- KS2 What is the optical / UV cosmological background radiation ?
- KS3 What is the molecular content of galaxies in the low-z universe ?
- KS4 What is the role of intracluster light and the accretion history in galaxy clusters ?
- KS5 What is the extent of mass loss in giant stars ?
- SS6 Calibration of the cosmological distance ladder with SB fluctuations
- KS7 Time domain astronomy: multi- $\lambda$  stellar/AGN/black hole variability
- KS8 Zodiacal dust, comet tails, properties of dust grains ...
- Synergies with LAMOST, MSE, Gaia and EUCLID

#### KSI What is the luminosity function of galaxies ?



McGaugh (1996)

LSB galaxies appear fainter than HSB of the same luminosity LSB galaxies appear smaller than HSB of the same size





Measuring the slope of the faint end of the galaxy luminosity function,  $\alpha$ , remains an unresolved observational challenge.

[...] incompleteness at the faint end is a frustrating and serious issue.

Geller et al. (2012) AJ 143, 102

#### KS2 The optical / UV cosmological background radiation





Cooray et al. (2009)

#### KS3 What is the molecular content of galaxies ? The prevalence of cold/warm molecular H<sub>2</sub>



DLA z = 0.185

Oliveira et al. (2014)





HI

dust

Bekki (2014)

-3

 $H_2$ 

Predicted spectrum for Stephan's quintet in the Lyman-Werner bands



Abgrall & Roueff (2014)

в

KS4 What is the role of intracluster light in the evolution of galaxies and clusters?



Predicted diffuse light in galaxy clusters

gas + star stripping in N-body simulations



#### Artifacts produced by flat field residuals ?





#### KS5 Mass loss from stars and the chemical evolution of galaxies



#### Betelgeuse

Decin *et al.* (2012)

AGB IRC+10216

#### FUV+NUV @ GALEX

FUV @ GALEX



Sahai & Chronopoulos (2010)

~350 RGB/AGB within the MESSIER reach Unique tool for the reclying of stellar matter in the interstellar medium

# KS7 Time-domain astronomy : variability and transients from the UV to the optical



### The main challenge for MESSIER The foreground contamination at ultra-low SB

100µm (IRAS)

Optical (de Vaucouleurs 1955)



Magellanic Clouds

#### **Optical** emission

#### IRAS 100 µm



Mihos et al. (2009)

Virgo cluster field




#### Angular power spectrum of IR cirri

# angular distribution



## Synergies

#### GAIA

MESSIER provides extension of star counts to fainter levels than G=20Use GAIA astrometry as prior for MESSIER detections Problem: pixel size to separate dwarf galaxies from stars down to  $g\sim 25$ Solution: use EUCLID astrometry as prior

#### EUCLID

Requires multi-band follow-up for photometric redshifts Use EUCLID astrometry as prior for MESSIER detections

#### LAMOST + MES

MESSIER will provide unique targets for kinematics

#### Time-domain astronomy

Transients, transits, TDE, GRB, SN, QSO/AGN variability Complements UV-based projects (Ultrasat) on longer timescales

#### Unique legacy value

The reference catalogue of multi-band space-based photometry

# The MESSIER satellite

I. Science rationale2. Technical design

National Astronomical Observatory of China (NAOC) Chinese Academy of Sciences (CAS)

Heritage Expertise in UV space instrumentation

Lunar-based UV Telescope

LUT @ Chang'e 3 D=150 mm Ritchey-Chrétien  $\lambda\lambda 245-340$  nm





### Shanghai Institute of Technical Physics (SITP) Chinese Academy of Sciences (CAS)

- 1958 Co-founded by Fudan University and CAS1962 Independent CAS Institute
- ✓ Space and aerial remote sensing
- Optoelectronic information processes
- Miniature cooling techniques for space applications
- Optical coatings
- $\checkmark$  Infrared detectors















#### Mission concept

#### Platform

ESA's PROBA-V (160 kg, 120 W peak) with VESPA dual-payload adapter @ Vega rocket

| Subsystem      | Equipment      | Heritage      |
|----------------|----------------|---------------|
| Avionics       | ADPMS, memory  | Proba2+ProbaV |
| Electric power | GaAs cells     | Herschel      |
| Bus structure  | A              | Proba V       |
| AOCS           | Magnetotorquer | Proba2        |
| Onboard SW     | RealTimeExecPr | Proba2        |
| Thermal        | Passive        | ProbaV        |
| RF             | S and X bands  | Proba V       |
| Design life    | 3-5 years      | Proba2+ProbaV |

## ESA PLATFORM PROBA - V : PRojet for On-Board Autonomy - Vegetation

- Mass: 160 kg
- Dimensions: 765 x 730 x 840 mm
- Three axisstabilised RPE < 1.5"</li>
- Body mounted Solar Array
- Payload downlink
   3 X-band transmitters



Consortium:CNESBelSPO/VITOSNSBFranceBelgiumSweden

building on PROBA-2 heritage



#### PROBA - V







## Mission concept

Platform

ESA's PROBA-V with VESTA dual-payload adapter @ Vega

Payload

Off-axis TMA f/2 telescope, 340 mm × 210 mm pupil flat focal plane, FOV : 4 × 2 square degrees ultra-stable PSF with ultra-low wings no lenses (to avoid Čerenkov radiation) extreme baffling to limit straylight contaminations 8 UV / optical filters no moving parts, passive cooling, low power TRL 9

# Optical design



Off-axis TMA f/2 telescope free-form rectangular mirrors 340 mm × 210 mm pupil flat focal plane FOV : 4° × 2° ultra-stable PSF with ultra-low wings no lenses (to avoid Čerenkov radiation)



# Re-focusing through M2 (TRL9)



### Mechanical design

#### Overall dimensions within PROBA platform



# Mass budget

| Structure Parts                                             | Quantity | Material                        | Weight  |
|-------------------------------------------------------------|----------|---------------------------------|---------|
| Primary Mirror                                              | 1        | SiC                             | 10.8kg  |
| Secondary Mirror                                            | 1        | SiC                             | 3.6 kg  |
| Tertiary Mirror                                             | 1        | SiC                             | 10.8 kg |
| Support of Primary Mirror                                   | 1        | Invar 4J32 1.2 kg               |         |
| Support of Secondary Mirror                                 | 1        | Invar 4J32                      | 0.3 kg  |
| Support of Tertiary Mirror                                  | 1        | Invar 4J32                      | 1.2 kg  |
| Truss Support                                               | 8        | Carbon Fiber                    | 10.2 kg |
| Mounting Structure of Primary<br>Mirror and Tartiary Mirror | 1        | Silicon Aluminum alloy          | 10.5 kg |
| Mounting Structure of Secondary<br>Mirror                   | 1        | Silicon Aluminum alloy          | 4.8 kg  |
| External Baffle                                             | 1        | Composite Carbon Fiber 2.4 kg   |         |
| Radiant Cooler and CCD                                      | 1        | Aluminum alloy 4.8 kg           |         |
| Surrounding Plates                                          | 4        | Aluminum Honeycomb Plate 4.8 kg |         |
| Thermal controlling system                                  | 1        | Thermal coating 2.4 kg          |         |
| Total                                                       |          | 67.8kg                          |         |

# Straylight analysis

| Items                                  | Absorption | Mirror reflection | Mirror<br>refraction | Scatter |
|----------------------------------------|------------|-------------------|----------------------|---------|
| mechanical arm                         | 0.095      | 0.01              | 0                    | 0.04    |
| <b>Optical mirror face</b>             | 0.05       | 0.9487            | 0                    | 0.0013  |
| The edge of reflector<br>and back face | 0.1        | 0.05              | 0                    | 0.85    |



Stringent limit to straylight within 20°

⇒ External pyramidal
pop-up extendable baffle





# Passive cooling of the FPA







## Outside heat Bright anodization Heater 1 Heat pipe Heat 2 Heat 2

# Passive cooling of the FPA (TRL9)



## Power consumption budget

| Sequence | Structure Parts                                 | Power                                                               | Comment                                                                                                                                                            |
|----------|-------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | CCD detector                                    | 0.5*8=4W                                                            |                                                                                                                                                                    |
| 2        | Data collector and data<br>transmission circuit | 5*8=40W                                                             |                                                                                                                                                                    |
| 3        | Thermal controlling of main structure           | 21W                                                                 | Corresponding to the<br>temperature of main structure<br>-20°C                                                                                                     |
| 4        | Anti-pollution heater of radiant cooler         | 20W                                                                 | The heater just works in the<br>beginning of orbit to protect<br>radiant cooler.                                                                                   |
|          | Total                                           | 65W (long-term running<br>mode) or 41W (short-term<br>running mode) | In the beginning of orbit, CCD<br>and data processing circuit don't<br>work, so the initial total power<br>(41W) is less than the long term<br>running mode (65W). |

+10% contingency: 72 W (peak)

# Orbit

#### Sun-Synchronous Orbit 900 km, 98° inclination, LTAN 6h precession 360°/year pointing ⊥ Sun-Earth direction avoiding Earthshine inertial great circle drift scan with centre at the Sun (similar to COBE, WISE, PROBA-V)





## Thermal analysis





## Thermal analysis



#### Temperature gradients

opposite to Sun

face to Sun -18 °C to -2 °C



Temperature gradients in zenith (sky) and nadir (Earth) directions 0 °C to +7 °C





#### Temperature stability of the mirrors

MI : I°C M2 : 0.5°C M3 : I°C (peak to valley)



#### The MESSIER system of filters



#### The MESSIER system of filters

#### New generation of UV detectors



New AR coatings allow to reach a quantum efficiency of 80-90% Atomic Layer Deposition: multi-layer (JPL/Columbia) ITAR free Qualified during the FireBall-2 balloon mission in 2015 (Caltech/Marseille)

#### The MESSIER system of filters



#### Current design of MESSIER within the PROBA-V platform



Mass budget : 67.8 kg (+10% contingency) Power budget : 65 W (+10% contingency)

## Mission concept (continued)

#### Detectors and filters

optimised QE > 80% for each UV/optical band (ITAR free) time delay integration controllers + data flow to ground

#### Orbit

SSO 700-900 km, precession 360°/year pointing  $\perp$  Sun-Earth direction avoiding Earthshine great circle drift scan with centre at the Sun

#### Ground segment

Small antenna network in China and Europe Two data analysis centres (Terapix legacy) + LSST pipeline

#### Mission lifetime

3 to 5 years full sky coverage to SB > 32 (optical)  $\rightarrow$  37 (UV) mag arcsec<sup>-2</sup>

## Issues

Deployable pop-up baffle
 CIBER legacy TBC

 Charge Transfer Inefficiency degradation Realistic simulations of final photometric quality (WFC3) 2021: solar minimum of activity OMERE simulations

#### Ground segment

Data flow to the ground (70 Gb/orbit) Flash memory (120 Gb) Onboard lossless compression (Euclid) Open source pipeline (LSST) Proper foreground subtraction (Planck)

# MESSIER

## Unveiling the ultra-low surface brightness universe



Fruitful European-Chinese collaboration built upon strong joint heritage (LUT, Gaia, PROBA)

The last unexplored niche remaining in observational space

Unique scientific returns in cosmology, galaxy evolution, stellar physics

Legacy value: reference catalogue for multi-band optical/UV photometry

#### EXTRA

#### Subtraction of the dust foreground





#### Use

Planck+IRAS+WISE+DIRBE + MESSIER UV/VIS constraints on albedo and size distribution of dust grains

Planck XXIX arXiv:1409.2495 Pop-up baffles

## Heritage from CIBER Cosmic IR Background Experiment sounding rocket







Baffles made with Al606 I Coated with Epner Laser Black multilayer metallic oxyde with microdendrites (<1% reflective) Spring loaded / tied to door