Astrophysical Virtual Observatory
- a GRID application

R. Albrecht - P. Benvenuti

ESAGRID WORKSHOP
ESSTEC, October 25th, 2002
Astrophysics’s peculiarities

- Observational science
- The information is carried by photons (of all wavelengths !)
- The Lab is the Universe
- Experiment’s conditions are supplied by the observations of “families” of objects
- Astronomers are flooded with data
- Statistical approach is becoming essential
Opportunities for New Science

Mining Large Data Sets as a discovery tool:
- Statistical Significance
- Rare Events
- The Unexpected

The issue: joining Large Data Sets
Statistical Significance

9 Million star CM diagram of the LMC

100,000 new variables - some with unknown physics

1488 LMC Cepheids

R. Albrecht - P. Benvenuti
The Rare Eclipsing Classical Cepheid Sag. Dwarf Galaxy

HV 5756 – Minimum #2

Sag. Dwarf Galaxy RR Lyr.

Sag. Dwarf Galaxy on the sky

Eclipsing Classical Cepheid
The Unexpected

Dark Matter Bubbles?
Why a Virtual Observatory?

- On-line digital Archives do exist
- Friendly web interfaces for browsing and retrieving data do exist
- Analysis tools and affordable workstations do exist
- What do we need more than that?
 - ...maybe just grants to buy more workstations and data-slaves...
Reality is different!

- Calibration, data quality and data description are highly non-uniform across Archives
- Merging multi-archive data is possible, but it is still a manual, tedious affair
- New instruments and surveys generate huge quantity of pixels (to be processed and analyzed...)
- Algorithms and analysis tools that can operate on distributed large data sets do not exist yet
How a VO can help?

- It will make archives really interoperable
- It will create a new generation of algorithms and procedures
- It will offer technical expertise to its Users
The increase in the data acquisition rate is larger than the increase in network bandwidth and local computing power.

The GRID approach offers a solution:
- The data stay where they are
- Processing is distributed
- The network is used to transfer the results, not the raw data
Eyes on the Sky

10000000

1000000

100000

10000

1000

"Eyes"

100

10

1

1500 1600 1700 1800 1900 2000

Year

T₂ ~20 years

R. Albrecht - P. Benvenuti
Numbers from the sky

Numbers/night

10^12, 10^11, 10^10, 10^9, 10^8, 10^7, 10^6, 10^5, 10^4, 10^3, 10^2, 10^1, 10^0

1500, 1600, 1700, 1800, 1900, 2000

$T_2 < 1$ year

1990-2000
Science Data Volume

graph showing Archive Volume (GB) from 1992 to 2001 with exponential growth.

ESO/STECF Science Archive Facility

Data Requested (GB) graph from 1996 to 2001 with linear growth.

T_2 < 12 months

R. Albrecht - P. Benvenuti 13
Projected Growth

Data input in the ESO archive

Total data holdings in the ESO archive

R. Albrecht - P. Benvenuti
Compute Power

- Moore’s Law
- $T_2 \sim 18$ mths
- Strategy to exceed this: parallelism
- Implies: bigger, distributed, shared systems
Network Bandwidth

Nielsen’s Law: $T_2 \sim 20$ months
AVO Status

- EU RTD 6th FP Proposal submitted in February 2001
- AVO approved with EU funds ~2 Million € (total budget ~ 4M €)
- Contract started in November 2001 - 3 Year Phase A study
- 9 NEW POSITIONS for 3 years over 6 institutions
- Total VO funding AVO+NVO+ASTROGRID = $21 million (US)
AVO Work Program

Work Areas:

1. Science Use Cases and Requirements

2. Interoperability deployment and demonstration

3. Technology needs
 - GRID systems
 - Scalable storage and computation
 - Databases
• A self-documented data hypercube

Issues

astrometric registration - scale distortion & calibration

photometric characterization & calibration
An evolving prototype

...a suitable choice of layers for previewing and browsing

...make a cut-out
The cut-out is the work space...

...the multi-wavelength layers are loaded automatically...

...a sliding cursor gives an interactive Spectral Energy Distribution...

...further tools will provide additional capabilities - fitting, re-extraction, training sets.
...the multi-wavelength layers will be accessed remotely using GRID approach.

...the data processing will be offered as a web service.
Major International VO Roadmap

Milestones

- First Science Demonstration Jan’03
 - Simple, limited data sets, use VOTable

- Global science demo. August’03 (IAU)

- Intermediate demo. Jan’04
 - First use of grid-like capabilities

- Complex science demo. Jan’05
http://www.eso.org/projects/av0