

Dust at Jupiter

S. Kempf, <u>R. Srama</u>, H. Krüger, F. Spahn, J. Schmidt, F. Postberg, A. Graps, M. Horanyi, E. Grün, B.Abel, A. Krivov,

Dust in the Jovian System

Ring System

Ejecta Clouds

"Io Ashes"

Interplanetary / Interstellar Dust

Io as a Dust Source: Nano-Dust Coupling to Magnetosphere

"Io Ashes" - Stream Particles

- Origin: Io Volcanoes
- Size: 10 ... 40 nm
- Dynamics Dominated by EM Forces
- Fast Enough to Escape
 From Jovian System
- Allow to Monitor Io Activity

Composition Of Io's Volcanic Matter

Ejecta Clouds

Galileo Dust Detector: Galilean Satellites Wrapped in Dust Clouds (Krüger et al., Nature, 1999)

Ejecta Production

Meteoroid Impacts Splash up Ejecta

Sremcevic et al., Icarus, 2005

Mass Yield ~ 4000

Koschny & Grün, Icarus, 2001; Krivov et al., Icarus, 2003

- Gravitationally Bound
 Ejecta Populate Cloud
- Some Ejecta Escape:
 - Feed Rings
 - Mass Loss Mechanism
 - Transport of compositional information

Almost Isotropic Dust Cloud Composed of Surface Ejecta

Dust Moon "at Work"

Gosammer Rings

Burns et al., Science, 1999

Jupiter's Dust Disk

Number density [km ⁻³]	$10^{6} - \frac{1}{10^{4}} - \frac{1}{10^{4$	hTh lo	Eu Go	from Jupiter	 	
Population (1)	Jovicentric distance (R _J) (2)	Particle radii (µm) (3)	Number density (km ⁻³) (4)	Mass density (kgm ⁻³) (5)	Dust mass in small grains (kg) (6)	Reference (7)
Amalthea ring	2.33 - 2.54	0.2 - 5	$\sim 2 \times 10^6$	$\sim 4 \times 10^{-18}$	~ 10 ⁶	This work
Thebe ring	2.54 - 3.1	0.2 – 5	$\sim 3\times 10^5$	$\sim 10^{-18}$	$\sim 2 imes 10^6$	This work
Thebe ring extension	3.1 - 3.75	0.2 - 5	$\sim 10^5$	\sim 4 $ imes$ 10 ⁻¹⁹	$\sim 10^{6}$	This work
Io to ring limit	3.75 – 6	0.2 - 2	$\sim 5 \times 10^{3}$	\sim 5 \times 10 ⁻²¹	$pprox 5 imes 10^4$	This work
Galilean ring	10 - 30	0.6 – 3	$10^2 - 10^3$	$10^{-21} - 10^{-20}$		Krivov et al. (2002a)
Captured particles	10 - 20	0.5 - 1.5	$\sim 10^{2}$	$\sim 10^{-21}$		Thiessenhusen et al. (2000)
Distant ring	\geq 50	1 – 2	$\sim 10^{1}$	$\sim 10^{-22}$		Krivov et al. (2002b)

Clouds are a Treasure Trove

Information about:

- Satellite's Surface
- Satellite's Interior
- Satellite's Mass Production
- Plasma / Magnetic Field
- Mass Flux into Solar System

Enceladus Ice Jets

Example: Enceladus

- Size: 499 km
- Density: I 600 kg/m³
- 70 km Ice Crust on Rocky Core

South Pole Ice Geysers

Dust Cloud

Dust Data

Dust Plume

Spahn et al., Science, 311, 2006

Geyser Grains Slower Than Escape Speed

Hill Radius ~ 950 km

Escape Speed ~ 207 m/s

Snow!

Kempf et al., 2009

Salty icy grains : Direct Evidence for Subsurface Liquid Water Reservoir

Water + Rocky Core

Water Dissolves Akali Salts

Zolotov, Geophys. Res. Lett., 34, 2007

Ice Grains Should be Salty!

Dust Composition

Cassini Dust Detector CDA

Geyser Water Ice Grain (H₂O)H⁺

Salty Ice Grains

Co-Added CDA Spectrum: Salt-rich Geyser

, Ice Grains (6%)

Lab Spectrum:

Laser Dispersion of Salt Water

Postberg et al., Nature, 2009

The Enceladus Ocean

"Soda" Ocean

Rich in Carbonates

pH ~ 9

Salinity ~1% (Earth 1...4%)

Postberg et al., Nature, 2009

Enceladus Lesson Learned

- to Understand Active Bodies the Properties of ALL Exhaust Products Need to be Known
- Without Dust Data the Conclusions Will be WRONG:
 - e.g. Kiefer et al., Science, 2006

The Dust Spectrometer TOF Mass Spectrometer

Mass Resolution ~ 200
Field Optics:

Parabolic Grid
Ring Electrodes

± Polarity

Orthopyroxene

Three (new) reasons for dust measurements

- New instrumentation (TOF spectrometer with 10-times higher mass resolution than Cassini-CDA)
- Ionisation at low impact velocities works (~2 km/s), especially for water ice grains
- Liquid ocean with carbonates, salts and organics can be detected by dust compositional measurements in the moon vicinity

Dust Research in Jupiter's Environment

- Discovery of dust clouds around moons
- In-situ characterization of the Gossamer Ring
- Discovery and characterization of nano-dust (lo ash)
 - Search for active sources (geysers)
 - Characterize dust charging / plasma interaction
 - Compositional characterization of salts, carbonates, organics in ice grains : liquid water
 - Look into moons (volcanoes, geysers) & onto surfaces

NEXT