The DARE Library family

3rd EJSM Instrument Workshop
19-01-2010
ESA/ESTEC Noordwijk – NL

Steven.Redant@imec.be
+32 16 281 928
In a nutshell...

• The DARE library family supports design of ASICS for spacecraft
 – Uses commercially available technology without change
 – Using the library is free of charge for European space industry
 – Customer can do front-end design (to netlist)

• Physical implementation services provided by imec
• Manufacturing, Packaging, qualification & Radiation test up to FM is supported

• Flexible solution
 – DARE allows for mixed signal design
 • Can add specific analog blocks; designed by you, a design house or imec
 – Cells can be added to the library
The DARE180 standard cell library family

- Developed in several ESA projects
- DARE = Design Against Radiation Effects (=RHbD)
- Commercial Technology: UMC L180 CMOS

- TID hardness is far beyond requirement level for geostationary orbit
 - Tested to 1 MRad
- No SEL, SEFI, SEH seen so far
- Low SEU sensitivity, compatible with geostationary orbit mission
 - ‘normal’ flip-flops & RAMs
 - HIT-based flip-flops are very insensitive to SEU
 - New test data from 2 designs will come available later this year
Libraries

<table>
<thead>
<tr>
<th>IO at 3.3 and 2.5 V</th>
<th>Logic</th>
<th>CIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core 1.8V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combinatorial</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>normal' FF's</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>HIT FF's</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>HIT FF with M1 progr. Reset</td>
<td>no</td>
<td>4</td>
</tr>
<tr>
<td>TIEx</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>IO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital IO 70x70</td>
<td>40</td>
<td>no</td>
</tr>
<tr>
<td>Digital IO 110x110</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>IO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog IO 70x70</td>
<td>5</td>
<td>no</td>
</tr>
<tr>
<td>Analog IO 110x110</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>IO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS 70x70</td>
<td>3</td>
<td>no</td>
</tr>
<tr>
<td>LVDS 110x110</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLL 70x70</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>PLL 110x110</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SRAM Compiler (6Tor cell)</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

All FF’s have scan equivalents

+ fillers & Corners

© imec/restricted 2010
DARE vs a commercial .18 library

- Maximum gate density = 25Kgates/mm²
- DARE cells are 2 - 4 times bigger than cells with same functionality from a commercial library
- DARE vs commercial cell power = 2.2x
 - Total power = Internal & Switching power
- No speed penalty
- Views available for a classical ASIC design flow
 - Using the HIT flip-flops no triplication is necessary
- Designs with a lot of RAM become very big
- SEU Hardening of RAM using EDAC circuit
How to get access

• Get in touch with Steven.Redant@imec.be
 – By mail, or by asking access to the library files on the web

• Sign NDA (per project)

• Get access to the download area on the web
 – www.europractice-online -> UMC -> Radiation-Tolerant-Library

• Download the (Front End) views
 – Synthesis & Simulation
One interface, including customer support

- Detailed Requirements Specification
- Front-End Design
- VHDL, Constraints
- Back-End Design
- ASIC Layout (GDSII)
- Digital Design Kit
- Digital Library Design
- Analogue Design Kit
- IMEC
- Foundry
- Evaluation
- Assembly
- Wafers
- Components
What is behind it...

- Detailed Requirements Specification
- Front-End Design
- Back-End Design
- VHDL, Schematics, Constraints
- Digital Design Kit
- Digital Library Design
- Analogue Design Kit
- ASIC Layout (GDSII)
- UMC
- IMEC

Evaluation
- Microtest, MAPRAD, Maser
- Test House

Assembly
- e.g. HCM
- Assembly House
- Wafers

imec/restricted 2010
imec contact persons

INVOMEC

- **H. Maes**

ASIC Services
- **Carl Das**

EUROPRACTECE

Design Services
- **Steven Redant**

First contact:

- **Library Development & Design Services**
 - **Team SVP**
 - **Danny Lambrichts**
 - **Paul Malisse**
 - **Luc Laeveren**
 - **AMS, MEMS**
 - **Carl Das**

- **Team DSBE**
 - **Luc Folens**
 - **Geert Vanwijnsberghe**

- **Team DSFCL**
 - **Geert Thys**

Manufacturing, Packaging & Testing Services

- **Team UMC**
 - **Tapeout & Manufacturing follow-up**
 - **Paul Malisse**

- **Team TSMC**
 - **Luc Laeveren**

- **Team OnSemi,AMS,MEMS**
 - **Carl Das**

- **Team DSFE**
 - **P&R**
 - **front-end Services (if needed)**
 - **Geert Vanwijnsberghe**

- **Team DSBE**
 - **Luc Folens**

- **Team DSFCL**
 - **Geert Thys**

- **DARE development and support Analog design (if needed)**
 Backend services

- IMEC has been running a backend service for 12 years now
 - Excellent first-time-right record
 - >13 foundries have been covered
 - Knowledge of Low power methods

- Customer delivers netlist (or VHDL) & constraints (or documentation)

- IMEC
 - (synthesis)
 - P&R (incl. tapeout checks)
 - provides backannotation information to customer
 - Additional design services can be discussed about
 - E.g. if an analog block is needed

- Customer gives tapeout ok!
MPW’s & full mask sets

- **(Europractice) MPW’s**
 - Scheduled UMC runs (pure logic runs are limited)
 - Apply for MPW slot >1 month in advance
 - 50 samples
 - .18: ±14k EUR/ 5x5mm square
 - Extra wafer (± 1900 EUR) => 30 extra dies per wafer
 - = Prototyping to prove functionality
 - Dies from WAT accepted wafers
 - No wafers delivered!

- **Single project Wafer runs**
 - Full Mask set => More expensive
 - Can start any time
 - More possibilities w.r.t. probing, holding at metal, wafer delivery, quality documentation, ...
 - Necessary for QM & FM in space projects.
Packaging & FM Qualification

- Package choice support
 - Packageability
 - Radiation testability
 - Qualifiability
 - Availability

- Full qualification flow set up with subcontractors
- Space qualification according to ESCC9000
 - Assembly of the ASIC, Chart F2
 - Screening of the ASIC, Chart F3
 - Qualification of the ASIC, Chart F4

- Radiation tests
Legacy is building up

- Delivery of first DARE180 based FM’s mid 2010
- Tapeout of imager prototype project imminent
- Talking to several new interested parties
Future

- **Additions to DARE180**
 - Fix a known problem in the RAM compiler
 - FP7 project submitted to
 - standardize flow for digital circuits
 - Add a High Speed Serial Link
 - Other possibilities (activity is in the pipeline)
 - DPRAM, 2PRAM, FIFO
 - RF tech characterization
 - Core cells @ 3.3V (=> I/O and core at same voltage)
 - Clock gating cells
 - 5V tolerant I/O, Cold Sparing I/O, ...
 - ...
 - DARE is a flexible solution

- **DARE90**
 - 90 nm test vehicle
 - TID test done (up to 2 MRad, 90nm is quite hard in itself)
 - SEE test to be done
 - Library definition & Start of implementation: later in 2010
In a nutshell...

- The DARE library family supports design of ASICS for spacecraft
 - Uses commercially available technology without change
 - Using the library is free of charge for European space industry
 - Customer does front-end design (to netlist)
 - Physical implementation services provided by imec

- Manufacturing, Packaging, qualification & Radiation test up to FM is supported

- Flexible solution
 - DARE allows for mixed signal design
 - Can add specific analog blocks; designed by you, a design house or imec
 - Cells can be added to the library