Radio & Plasma Wave Instrument (RPWI) for the Jupiter Ganymede Orbiter (EJSM/JGO)

Institute	Investigators
Swedish Institute of Space Physics, Box 537, SE-751	J-E. Wahlund, L. Åhlén, M. André, J. Bergman,
21 Uppsala, Sweden (IRF-U)	C. Cully, A. I. Eriksson, M. W. Morooka, A.
	Vaivads
Laboratoire de Physique des Plasmas (LPP), 10-12	T. Chust, P. Canu, C. Colliot, I. Zouganelis
Avenue de l'Europe, 781 40 Velizy, France (LPP)	
Dep. of Physics & Astronomy, The University of Iowa,	W. S. Kurth, G. Hospodarsky, D. Kirchner
lowa City, lowa 52242, USA (UofI)	
Department of Geophysics, Tohoku University,	Y. Kasaba, T. Ono, A. Kumamoto, H. Misawa, F.
Tohoku, Japan (UT)	Tsuchiya [and other institutes: Kyoto Univ.,
	Kanazawa Univ., and Toyama Pref Univ.]
Astronomical Institute, AS CR Bocni II/1401, 14131	P. Iravnicek, S. Stverak
Prague 4-Sporilov, Czech Republic (Asl)	L D L -hustan
ESA, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk,	JP. Lebreton
Holland (ESTEC)	L Diamhana L A Crammash
Space and Plasma Physics, Electrical Engineering,	L. Blomberg, J. A. Cumnock
Sweden (KTU)	
Sweden (KIH)	H. Pothkashi, I. Grugorazuk, M. Morawakiha
Sciences 00 716 Bartycka 18A Warsaw Baland	11. Kotikaciii, J. Orygorezuk, W. Worawskine
(SRC-PAS)	
Space and Atmospheric Physics group, Imperial	I. Müller-Wodarg
College London, London, UK (Imperial)	
Department of Space Physics, Institute of Atmospheric	O. Santolik, J. Soucek
Physics, Prague, Czech Republic (IAP)	
Department of Physics, University of Oslo, Oslo,	J. Holtet, B. Lybekk
Norway (UiO)	
Space Research Institute, Austrian Academy of	R. Karlsson
Sciences, Schmiedlstraße 6, 8042 Graz, Austria (SRI)	
Space Science Laboratory, University of California,	S. D. Bale, D. Sundkvist
Berkeley, USA (SSL)	
LPC2E, CNRS, 3A, Avenue de la Recherche	JG. Trotignon, J. L. Rauch
Scientifique, 45071 Orléans cedex, France (LPC2E)	
CNRS-CESR-Université Paul Sabatier 9, Avenue du	N. André, P. Louarn, P. Garnier, R. Allioux
Colonel Roche, BP 44346, 31028 Toulouse Cedex 4,	
France (CESR)	

18 Institutes from 10 Countries

Both instrument builders and theoretical groups

Heritage of radio, cold plasma, and plasma wave instrumentations onboard:

Cassini, Cluster, Rosetta, Galileo, Voyagers, BepiColombo, Swarm, Themis, Astrid II, Freja, Viking, STEREO, Juno, RBSP, Proba-2...

> *EJSM Instrument WS, ESTEC, Jan. 18-20, 2010*

RPWI Science (some)

- Detailed investigation of moon-magnetosphere interactions (Ganymede & Callisto)
 - Plasma characteristics (n_e, n_i, T_e, v_{di}, ...) of ionized exospheres & Jupiter's magnetosphere
 - Electric conductivities (σ) of ionized exospheres
 - E- & B-fields of ULF & plasma waves, and their role in energy transfer
 - Magnetospheric convection patterns ($\mathbf{E} \times \mathbf{B}$, v_{di}), co-rotation break-down
 - Ionospheric current systems
 - Study time variability (dynamics) due to external forcing, plasma escape
- Monitor remotely generated radio waves
 - Source locations, auroral processes
- Monitor µ-sized dust
 - Dust-plasma interaction?
- Coupling processes between Jupiter's magnetosphere, ionosphere and thermosphere

RPWI Radiation Protection

Spot shielding

- All exterior electronics (pre-amps)
- Box & Spot shielding
 - Main RPWI electronics box
- Use of Rad-hard components
- Radiation test facilities in Uppsala
 - Co60
 - Electrons, 7.5-15 MeV
 - Protons, 20-180 MeV
 - Protons, < 6 MeV
 - Heavy ions

1-10 Rad/min High dose rate 150 Rad/min

Low dose rate

Free of charge 500 €h 500 €h 100 €h

Example: LP-PWI Preamplifier

Mission heritage:.

Viking: E-field/Density Cluster: E-field/Density Cassini: Density New development: New Rosetta: E-field/Density Astrid: E-field/Density

Specifications:

- Switchable E-field / Density
- 100mW power consumption
- 500kRad Radiation hardend (w/o shielding)
- Positive feed back current generator

• E-field:

DC-300Hz +-100V input range DC to 3MHz small signal bandwidth Better than 10⁹ input resistance 1nA – 1µA Current Bias range 16 nV/sqr(Hz) noise

•Density:

DC to 10kHz bandwidth 10pA to 1µA input current range +-100V Voltage Bias range

Freja: E-field/Density Swarm: Density

New development: New low noise Rad hard operational amplifiers Develop a MEMS chip including nano-switches and amplifiers

RWI, Space Research Centre Design

e,	
Mechanical	
Dimensions (when stowed):	41 x 57 [mm] (H x Φ)
Dimensions (when deployed):	575 x 870 [mm] (H x Φ)
Mass:	~0.20 [kg]
Monopole length:	1.00 [m]
Tubular boom material:	Berilium Bronze 0.05x20 [mm]

RWI, Berkeley Design

Figure E.8 Antenna deploy unit and preamp and a possible mounting configuration. The deployed configuration is designed to put two antennas near the spacecraft body, and the third antenna out into the plasma. RRR measurements will use a pair of antennas as a dipole.

Table E.3 DEWD Resources

Subsystem	Mass (kg)	Power (W)	Form
TDS/DPU	3.6	3.5	7.5"x8.5"x4.5"
RRR	1	1.5	7.5"x8.5"x1"
Preamp	0.4	0.4	5"x3.5"x1.5"
Antennas/ Deploy	0.7	5 2 0	2"x2"x2"
Total	5.7	5.4	

'whip stacer' - Polar, THEMIS, RBSP sensors

3 x 1.5m monopoles < 1.1 kg (w/ preamp) Stacer: 20 g/m up to 2.5 m 0.2-0.4 cm diameter

Dust Electric Waveform Detector Very high TRL

Dual-Band Search Coil: Bepi-Colombo

SCM: current status (*design with better sensitivity*)

Optimized design using 20 cm Dual-Band Search Coil sensors

Number of DB-SC sensors	3
Bandwidth	0.1 Hz to 4 kHz (LF1 band) 1 kHz to 20 kHz (LF2 band)
Sensitivity	8 pT/√Hz @ 1 Hz 0.6 pT/√Hz @ 10 Hz 0.06 pT/√Hz @ 100 Hz 10 fT/√Hz @ 1 kHz 4.5 fT/√Hz @ 10 kHz
Mass (DB-SC ^(a) + PA ^(b))	750 g (+ cables ~120 g/m) ^(c)
Power	200 mW ^(d)
Length	20 cm
Location	boom (> 2 m)
Electrical interface	6 analog signals to LFR
(a) 30 a less only if mono-band	(c) 36 g/m less if mono-band

(b) 1 mm Al thickness (box: ~50 g)

(d) 100 mW if mono-band

Heritage: Ulysses (ESA/NASA), Galileo & Cassini (NASA), Cluster (ESA), THEMIS (NASA). Current fabrication: MMS (NASA), Bepi Colombo (ESA/JAXA)

LP-PWI (GANDALF) sticks/booms

S/C Modelling support for RPWI Sensor accommodation

- Potential patterns
 - Few mV/m after correction
- Wake patterns
- S/C photo-electron distributions

Wake pattern in Solar wind

Photo-electron density in solar wind

THEMIS. Symmetric booms, length 3 m.

Ganymede Conductivities & Currents

- $n_{n,surf} \sim 1-3.10^8 \text{ cm}^{-3}$
- $n_e \sim 400-4000 \text{ cm}^{-3}$
- O₂⁺ O₂ collisions dominate
 - $v_{in} = 2.59 \cdot 10^{-11} n(O_2) sqrt(T) (1-0.073 log(T))^2 \sim 0.1 0.5 s^{-1}$
- $v_{in} \sim \Omega_i = 0.4 \text{ s}^{-1}, v_{en} \ll \Omega_e$
 - $\sigma_{\rm H} \approx -\sigma_{\rm P} \sim {\rm en}_{\rm e}/(2{\rm B}) \sim 10^{-4} {\rm ~mho}$
- Measurable currents
 - $j \ge \sigma E \sim 0.1 \ \mu A/m^2$
 - $I \ge 100 \text{ kA}$ through exo-ionosphere

Saturn Equatorial Ion Drift Speed (preliminary)

Whole Saturn magnetosphere n_e mapping

2 orders of magnitude variations Low & high density regions

Rev 000 - 043 [Morooka et al., Ann. Geophys., 2009]

RPWI Measured Quantities

Measured Quantity	<u>Range</u>
<u>LP-PWI</u>	
Electron density (n_e , $\delta n/n$)	$0.001 - 10^6$ cm ⁻³ , 0(dc)-10 kHz
Ion density (n_i)	$1-10^6 \text{ cm}^{-3}, <1 \text{ Hz}$
Electron temperature	0.01 – 20 eV, <100 Hz
Ion drift speed	0.1-200 km/s, <1 Hz
Ion temperature	0.01 − 20 eV, <1 Hz
Spacecraft potential	±50 V, <100 Hz
Electric field vector, $\delta \mathbf{E}(\mathbf{f})$	$0(dc) - 3$ MHz (waveform), ± 1 V/m
	Bit resolution: 0.015 mV/m
Integrated solar EUV flux	Resolution 0.05 Gphotons/cm ² /s
-	
Active Measurements	
Electron density (n_e)	$0.001 - 1000 \text{ cm}^{-3}$
Electron temperature	$0.1-100~{ m eV}$
Electric sensor calibration	
Effective antenna length of sensors	
Deployment length of sensors	
<u>RWI</u>	
Electric field vector, $\delta \mathbf{E}(\mathbf{f})$	10 kHz – 45 MHz
<u>SCM</u>	
Magnetic field vector, $\delta \mathbf{B}(\mathbf{f})$	0.1 Hz - 20 kHz
	(one coil up to 600 kHz)
<u>RA-PWI</u>	
Electric field, $\delta E(f)$	1 kHz – 45 MHz

NOTE: Electron density, spacecraft potential and magnetic & electric field vectors are available for all plasma conditions encountered (also in the magnetosphere).

Callisto Ionosphere

- Galileo Plasma wave instrument [Gurnett et al., GRL, 2000]
- N_e up to 400 cm⁻³ at 535 km > 100 cm⁻³ at 500-600 km
- Highly variable
- Ionospheric peak $N_e \approx 7000-17000 \text{ cm}^{-3}$
- $H_p \approx 30-50 \text{ km}$
- $U_{SC} < 0$ expected

Ganymede Exo-Ionosphere

Galileo Plasma wave instrument [Gurnett et al., 1996; Eviatar et al., 2001]

- 200-300 cm⁻³ @ 260 km
- n_{e,surface} ≈ 400-4000 cm⁻³ [Kliore et al., 1998]
 T_i ≈ 1-3 eV [Frank et al., 1997]

Theoretical Models in support of RPWI

Ganymede

Europa

I. Mueller-Wodarg Imperial College London

0

Models of Moon interactions

Upcoming: Hybrid code simulations of Ganymede (2 groups)

Numerical simulations of Titan environment. Courtesy R. Modolo.

RPWI Team & Meetings

- Distribution of tasks within the team in progress
- Meetings:
 - Uppsala, November, 2009
 - Prague, February 18-19, 2010
 - May?

S/C Requirements

Instrument	Mass [kg]	Power [W]	TM [kbps]	TRL
RPWI Common Electronics	3.0^{1}	$7+3^{2}$		8 ³
LP-PWI (GANDALF)	2.0^{4}		Min: 64 bps	8
			Max: Several kbps ⁵	
RWI	1.5^{6}		1-100 kbps ⁵	8
SCM	1.0^{7}		See LP-PWI	8
RA-PWI	(3.7^8)		From 50 bps-2kbps ⁵	8
Total:	$7.5 + (3.7^8)$	$7+(3^2)$	64 bps-100 kbps ⁵	8

1) Includes electronics box (1kg), DPU (400g), DC/DC converter (200g), three electronics cards (2x400g+1x600g)

2) Includes also heaters (3W, TBC)

3) Electronics design is flight proven. Interfaces to sensor elements and electronics box need be adapted. Possible update due to outcome of radiation analysis in this proposed study.

4) Includes 4x spherical sensors (50g each), booms (450g each) incl. pre-amplifiers.

5) Data rates are dependent on mode of operation choice. The duty cycle of data taking can be adjusted to comply with available TM rates at a particular time.

6) Includes antennas, pre-amplifiers and shielding

7) Includes 3 SCM-sensors. Should be accommodated on a 1-2 m boom (e.g., MAG boom).

8) Optionally it is possible to use the SSR dipole antenna, in which case no sensor mass is needed (TBD)

ESA TDAs

- Technology Development Activities (TDAs)
- Our input:
 - Development of FPGA algorithms for digital analyzers to obtain high dynamic range
 - Development of radiation hard low noise/distortion pre-amps
 - Prototyping RWI antenna designs
 - Define LP-PWI deployment sticks
 - Develop EMC requirements (interaction during S/C design)
 - Investigate S/C body effects on RPWI radio measurements
 - Investigate RPWI design imposed by S/C environment models (ESA SPIS)
 - RWI antenna prototyping [H. Rothkael application]

- Titan Exo-Ionosphere
 - Extend several R_{Titan}
 - Heavy cold ions
- Plasma escape
 ~ few 10²⁵ ions/s

The U_{float}-N_e-proxy (SOI)

Upstream magnetospheric dynamics

[*Morooka et al.*, Ann. Geophys., 2009] Mapped Saturn's magnetosphere using 44 orbits & identified the magnetospheric regions

2 orders of magnitude variations in n_e Quasiperiodic ~ planetary rotation (10.7 h)

Also provides proof for that SKR longitude variations is associated with bulk plasma variations

Plasma parameters. Voyger 1 fly-by

EJSM: MAGNETOSPHERE

Radial Distance (R_{.I})

Voyager 1, March 1, Day 60, 1979

 10^{-1}

3.0

The electron number density (n_e) is determined through several independent techniques:

- Through LP-PWI potential bias sweeps (for densities $> 10 \text{ cm}^{-3}$)
- Through monitoring the upper hybrid emissions (f_{uh})
- Through monitoring the spacecraft potential (U_{SC}) and calibrating toward f_{uh} (or possibly an electron spectrometer on board S/C).
- Through continuous sampling of the LP-PWI probe current (ms time resolution).

The radio and plasma waves measurements by RPWI combined allows for determination of

- Wave polarization
- Wave Poynting flux/Radio flux
- Electric field vector determination in frequency range from near dc to 45 MHz
- Interferometry and determination of wave group speeds, plasma drift speeds, and plasma density inhomogeneities (δn/n)
- Convection electric fields (**E**×**B** drift)
- Waveform determination
- Electric fields of structures and waves responsible for accelerating charged particles
- Direction finding
- Dust distribution (above about 1 µm size)
- Signatures of dust-plasma interactions

Titan Ionosphere profile (20 Hz)

Cassini Lessons

Improving LP ion ram flux measurements

- Larger probe, e.g. 5 cm radii
- More sensitive receiver, better than 100 pA
- Larger U_{bias} range, e.g. ± 100 V
- Should then be possible to measure the ion flux in Jupiters co-rotating magnetosphere around Ganymede and even Callisto & enable direct V_{di} measurements thereof
- A combination of several methods for N_e and T_e measurements are essential
- Particle measurements are inadequate to measure a dense cold plasma
 - Electron Spectrometers are effected by $U_{SC} < 0$ making the core population unreachable
 - Ion Energy Spectrometers are extremely un-sensitive at low energies
- Long antenna (10 m) plasma wave measurements difficult below 1 kHz

AVAILABLE RADIO DATA AT JUPITER: SYNCHROTRON DATA

Figure 1. History of long-term variations in the flux density of Jupiter's synchrotron radio emission at 13-cm wavelength. The DSN and GAVRT data (open and filled triangles) were merged with the ongoing NASA/JPL Jupiter Patrol (filled circles), and observations made with Parkes and Nancay radio telescopes (open circles) (after *Bolton et al.* [2002]). The black curve depicts the general temporal variation of the decimetric emission.

Santos-Costa and Bolton, JGR, 2008

VLA observations made at various wavelengths (e.g., 20 and 6 cm) http://archive.cv.nrao.edu

Next year:

Proposal for a Jupiter Plasma Science Archive at CDPP

AMDA (Automated Multi-Dataset Analysis)

Table 2. Average and Peak Powers of Jovian Radio Components

Cassini

RPWS

Data

		Spectral	Beam Solid	Average	Average Power	
Co	omponent	Range, kHz	Angle Ω , sr	Power, W	(High Activity), W	Peak Power, W
QP	(LF)	3.5 - 10	2π	2.3×10^{8}	4.5×10^{9}	5.5×10^9
QP	(HF)	10-23	2π	5.6×10^{7}	2.9×10^{8}	7.0×10^{8}
QP	(total)	3.5-23	$2\pi^{a}$	2.9×10^{8}	4.8×10^9	6.2×10^{9}
nK	OM	60 - 160	4.8 ^b	5.0×10^{7}	2.4×10^{8}	7.7×10^{8}
bK	OM (LF)	23-200	1.9	7.1×10^{7}	3.0×10^{8}	7.2×10^{9}
bK	OM (HF)	200-400	1.9	1.0×10^8	1.8×10^8	1.9×10^{9}
bK	OM (total)	23-400	1.9 ^c	1.7×10^{8}	4.8×10^{8}	9.1×10^{9}
HO	M (LF)	400 - 1000	1.6	5.1×10^{8}	4.0×10^{9}	1.5×10^{10}
HO	M (HF)	1000 - 3000	1.6	3.8×10^{9}	3.5×10^{10}	1.2×10^{11}
HO	M (total)	400-3000	1.6 ^c	4.3×10^{9}	3.9×10^{10}	1.4×10^{11}
DA	Μ	3000-16000	1.6 ^c	1.3×10^{10}	8.2×10^{10}	4.5×10^{11}

EJSM: CALLISTO

Table 2. Measured Ionospheric Properties and Inferred Atmospheric Densities for Callisto

Observation	SZA (deg)	Peak Altitude (km)	Peak Electron Density (cm ⁻³)	Neutral Scale Height (km)	Inferred O_2 Density at the Surface (cm ⁻³)	Inferred O ₂ Column Density (cm ⁻²)
C20 N	85.0	72.0	$4,300 \pm 4,40$	_		<u>1</u> 21
C20 X	99.2	42.0	$5,100 \pm 3,300$	-	-	-
C22 N	78.7	27.2 ± 1.5	$15,300 \pm 2,300$	14.8 ± 0.2	PI - 2.14 \times 10 ¹⁰ ± 1.28 \times 10 ¹⁰	C - 2.80 \times 10 ¹⁶ \pm 6.81 \times 10 ¹⁵
					EI - $1.76 \times 10^{10} \pm 2.73 \times 10^{9}$	
					C - 1.89 \times 10 ¹⁰ ± 4.59 \times 10 ⁹	
C22 X	95.0	8.0	$8,500 \pm 17,000$	-		-
C23 N	82.5	47.6 ± 1.5	$17,400 \pm 1,500$	24.5 ± 0.9	PI - 1.89 \times 10 ¹⁰ \pm 2.00 \times 10 ⁸	$C-4.01 \times 10^{16} \pm 4.40 \times 10^{15}$
					EI - $1.49 \times 10^{10} \pm 2.81 \times 10^{9}$	
					C - 1.64 \times 10 ¹⁰ ± 1.70 \times 10 ⁹	
C23 X	97.6	32.0	$3,000 \pm 1,600$	-		-
			10. D	PI-Photoionization	EI-Electron Impact	C-Combined

Figure 2. Electron density profiles derived from Galileo radio occultation observations of the Callisto ionosphere. The smoothed profiles are shown in black, and the unsmoothed ones in gray.

Galileo Callisto Flybys, Kliore et al., JGR, 2002 Radio occultation data (2.5 GHz, S-band)

<u>Ionospheric densities :</u> Density above 10⁴ cm⁻³ for very close flybys (< 50 km)

EJSM: GANYMEDE

Galileo **PWS** Data Das2 software from lowa

 $0.34 \\ 0.88$

downstream

low-latitude upstream midlatitude downstream

G28 G29

below above

PAYLOAD SUMMARY TABLE

Instrument	Acronym	Mass [kg]	Size [cm]	Power [W]	TM [kbps]	TRL	Heritage
RPWI Common	RPWI-E	3.0^{1}	15x15x8 cm	$7+3^{2}$		8 ³	
Electronics							
Langmuir Probe & Plasma	LP-PWI	2.0^{4}	4x 5cm probes		Min: 64 bps	8	Cassini RPWS
Waves Instrument			on tip of		Max: Several		Rosetta LAP
			1-3m booms ⁵		kbps ⁶		Cluster EFW
							BepiColombo PWI
Radio Wave Instrument	RWI	1.5^{7}	Triad of		$1-100 \text{ kbps}^6$	8	Cassini RPWS
			50cm-1m				STEREO Waves
			antenna ⁸				Juno, RBSP
							BepiColombo PWI
Tri-axial Search Coil	SCM	1.0^{9}	11x11x11cm		See LP-PWI	8	BepiColombo PWI
Magnetometer							Cassini RPWS
Radar Antenna Plasma	RA-PWI	$(3.7)^{10}$	2x6m dipole,		From 50 bps to	8	Cassini RPWS
Wave Instrument			SSR antenna ¹⁰		2kbps ⁶		BepiColombo PWI
Total:		$7.5+(3.7)^{10}$		$7+(3)^2$	64 bps-100 kbps	8	

1) Includes electronics box (1kg), DPU (400g), DC/DC converter (200g), three electronics cards (2x400g+1x600g)

2) Includes also heaters (3W, TBC)

3) Electronics design is flight proven. Interfaces to sensor elements and electronics box need be adapted (no problem).

4) Includes 4x spherical sensors (50g each), booms (450g each) incl. pre-amplifiers.

5) Boom design depends on possible accommodation configurations on S/C. The further the sensors are from the S/C main body the better. A most suitable place would be the solar panels furthest away from the S/C main body, in which case ca: 1 m long sticks will do.

6) Data rates are dependent on mode of operation choice. The duty cycle of data taking can be adjusted to comply with available TM rates at a particular time.

7) Includes antennas, pre-amplifiers and shielding

8) Includes triad of antennas with deployment mechanism. This triad should preferably be deployed on a boom (TBC) and depends on possible S/C accommodation configuration. The 1-2 m boom not included in mass estimate. Can be MAG boom.

9) Includes 3 SCM-sensors. Should be accommodated on a 1-2 m boom (e.g., MAG boom).

10) Optionally it is possible to use the SSR dipole antenna, in which case no sensor mass is needed (TBC).

Icy Galilean Moons (Europa), Ganymede, Callisto

- H₂O-products released fr. surface:
 - Magnetospheric particle sputtering
 - Sub-surface breaching of oceanic material
 - Diffusion from interior
 - Meteoritic impact evaporation
 - Solar radiation decomposition
- Leads to
 - O-rich atmospheres (10^8 cm^{-3})
 - O_2^+ -rich ionospheres (500-20000 cm⁻³)
 - Exospheres/exo-ionospheres studied by radio-occultation onboard Galileo & Pioneer-10 and plasma wave instrument (f_{UH}) onboard Galileo
- Interaction with Jupiters magnetosphere makes them highly variable and act as MHD dynamo current system generators
- Possible current systems also in the sub-surface oceans

Ganymede surface interactions

- Internal **B**-field (700 nT)
- Plasma wave acceleration
- Energetic particles reach surface near the poles
- Change surface ice properties

LP measurement of V_{di}

• Ion current (V_{di}) in magnetosphere near Ganymede

- 10 cm diameter probe
- Sensitivity = 10-50 pA to probe
- $n_i v_{di} > (1 4) \cdot 10^{10} \text{ ions/m}^2/\text{s for 10 cm probe}$
- $n_i v_{di} > (4 16) \cdot 10^{10} \text{ ions/m}^2/\text{s for 5 cm probe}$

Environment [after Blomberg et al., 2005]

5e11 ions/m²/s

5e10 ions/m²/s

Body	Io	Europa	Ganymede	Callisto	Unit
Radius	1815	1565	2640	2420	km
Distance from Jupiter	5.9	9.4	15.0	26.4	R _J
Orbital period	1.769	3.551	7.155	16.689	days
Co-rotation velocity	75	119	180	334	km/s
Observed plasma velocity	62-74	98	138	236	km/s
Orbital velocity	17.3	13.7	10.9	8.2	km/s
Relative co-rotation velocity	45-57	84	127	228	km/s
Density, Jovian magnetosphere	4000	50	4	0.2	c m ⁻³
Co-rotational dynamic pressure	400	12	2	0.4	nPa
Electron temperature	4	43	130	130	eV
Ion temperature	43	52	60	86	eV
Thermal pressure	30	0.8	0.1	0.01	nPa
Jovian magnetic field	1800	450	100	10	nT
Intrinsic B field (eq. surface)	1300?	small	700	small	nT
Alfvén velocity	130	300	250	300	km/s
Acoustic velocity	19	26	37	40	km/s
Magnetosonic velocity	133	310	250	300	km/s
Beta	0.02	0.01	0.03	0.2	

Table 1. The Galilean moons of Jupiter – properties of the moons and their plasma environment. Adapted after [8].

T30 Outbound

Solar system – best *in situ* laboratory to study plasma universe!

U_{SC} in Saturn's Magnetosphere

- Equatorial U_{SC}
 - Plasma Disk (<11-14 R_{s}) : < 0V
 - Beyond 11-14 R_S: > 0V
 - High N_e : + few V
 - Low N_e: +15-40V
- Z-dependence:
 - Lobe regions: +25V to +60V

SW

- SW: + few V

Cassini Experience

Radio & Plasma Wave Science (RPWS)

- Antenna trio (few Hz 16 MHz) & Sounder
- Three-axis Search-Coil (few Hz -12 kHz)
- Langmuir Probe (LP)
 - TiN coated spherical sensor (5 cm) on 1.5 m boom
 - Bias Voltage Sweeps (each 24 s)
 - $N_e > 5 \text{ cm}^{-3}$ (photo-e⁻ limited)
 - $T_e < 8 \text{ eV} (U_{bias} < \pm 32 \text{ V limited})$
 - U_{SC} within $\pm 70 \text{ V}$
 - Give $N_{e,proxy}$ fr. 0.0001 cm⁻³ to 5 cm⁻³
 - Ion flux, V_{di} , N_i
 - UV (Ly- α) intensity
 - Other
 - 20 Hz [~300 m res.] at Titan
 - $\delta N/N$ -"interferometry" at 10 kHz