SYNERGISTIC RADIO AND PLASMA WAVE SCIENCE FOR EJSM B. Cecconi, N. André and the EJSM-EM sensor Study Team

Electrodynamic portrait of the Jovian System

Ιο

- Io-Jupiter Circuit
- Plasma Torus
- Alfvén Wings
- Auroral Footprint
- Source of plasma
- dust streams

Jupiter

- Radio Emissions
- UV Aurora
- Magnetic Field
- Polar Cap
- Ionospheric Currents

- ACK &

Europa

- Exosphere
- Internal conductive layer
- auroral footprint
- lo torus interaction

Ganymede

- Intrinsic Mag. Field
- Internal conductive layer
- Mini-Magnetosphere
- Local Waves
- Ganymede aurorae
- Auroral Footprint

- Exosphere
- Internal conductive layer
- Induced Mag. Field

History of Jovian exploration

	Spacecraft		Orbits	Radio Instrumentation	Maximum frequency	Plasma Wave Instrumentation	Sensors	
	Voyager	~	flyby	total flux, sign of circular polarization	40.5Mhz	E only	Electrical: 2 monopoles (10m)	
	Ulysses	٠	flyby (outbound was polar)	flux, polarization, direction finding	940kHz	E+B	Electrical: 1 dipole (72.5m) 1 axial monopole (7.5m)	
,	Galileo		misc orbits	total flux only	5.6MHz	E+B	Electrical: 1 dipole (6.6m)	
	Cassini	٠	distant flyby >135Rj	flux, polarization, direction finding	16MHz (GP up to 2Mhz)	E+B	Electrical: 3 monopoles (10m)	
,	New Horizons	×	distant flyby	— no Radio & Plasma Waves instrumentation —				
	Juno		polar orbits	total flux only	40MHz	E+B	Electrical: 1 dipole (~2m)	
	EJSM (JGO, JEO?)	*	Tour + Satellites	flux, polarization, direction finding	45Mhz	E+B	TBD (This study!)	

Electromagnetic Sensors for EJSM

[See also the EJSM ElectroMagnetic Sensor Study Poster]

Possible sensor types:

- [a] Electric antenna boom (E-HF + E-BF)

- long dipole (~6 to 10 m)
- triad of short antennas (~Im)
- [b] Langmuir Probe (plasma + E-BF + E-DC)
- [c] Search Coil (B-BF)
- [d] High Frequency Magnetic Loop (B-HF)
- [e] Rogovski Coil (current)
- [f] Association with MAG instrument (B-DC)
- [g] Mutual Impedance Probe (plasma)

Science optimized sensor selection criteria:

- Size, mass of sensors
- Sensitivity (overall gain, preamplifier sensitivity)
- Interference with other instruments FoV
- Accommodation, risks (momentum, oscillations, planetary protection)
- Radiation tolerance (shielding, instrument design)
- Electromagnetic cleanliness (e.g. prefer passive instrumentation)

RPWI-PDD use SSR?

RPWI-PDD RPWI-PDD not in PDD not in PDD TBD ▲ EMC !

- ...

Unique Science Aspects

Goniopolarimetry: [a] or [d], monopole or dipole, (depending on EM-Sensor Study outcome)
Thermal Noise Spectrometry: [a] with long antennas
Dust, nano-dust: [a] with long monopole
Plasma waves / waveform [a] [b] [c] with long dipole
Local plasma parameters: density [a] [b], temperature [a] [b], speed [e], S/C potential [b], magnetic field [a] [f], core/halo electron distribution [a]

Unique Science Aspects

•Goniopolarimetry: [a] or [d], monopole or dipole, (depending on EM-Sensor Study outcome)
•Thermal Noise Spectrometry: [a] with long antennas
•Dust, nano-dust: [a] with long monopole
•Plasma waves / waveform [a] [b] [c] with long dipole
•Local plasma parameters: density [a] [b], temperature [a] [b], speed [e], S/C potential [b], magnetic field [a] [f], core/halo electron distribution [a]

cience Aspects

dipole, (depending on EM-Sensor Study outcome) ong antennas

h long dipole

•Local plasma parameters: density [a] [b], temperature [a] [b], speed [e], S/C potential [b], magnetic field [a] [f], core/halo electron distribution [a]

SYNERGISTIC SCIENCE JGO/JEO (Cross-Instrument or Cross-Spacecraft)

Galilean Satellite Science

- flyby science (local electrodynamic content, induced magnetic respo
- magnetospheric interaction (alfven wings, current, magnetosphere,
- Ganymede magnetosphere (stereo observations)
- magnetospheric context (ENA, UV, IR, Radio, Io torus)

 $\Phi = 90$

Φ=240°

litary Structure

38

9

SYNERGISTIC SCIENCE JGO/JEO (Cross-Instrument or Cross-Spacecraft)

COMPLEMENTARY SCIENCE

- radio monitoring - Radar intruments [Surface/Interior] - calibration reference (plasma density + S/C potential) [plasma particle instruments] - event triggering: burst mode observation, onboard boundary crossings detection, instrument mode change (cf STEREO, THEMIS) [Engineering] - current detection magnetometer data a interior magnetic field (cf ESA/SWARM) [Interior] - diagnostic of onboard S/C activity/interference [Engineering] - radio/UV → auroral emission [Atmosphere] [Surface/Atmosphere]

[Surface]

- Ganymede/lo local aurora

- dust → sputtering → surfaces

Dust detection with STEREO/Waves

BEYOND PLANETOLOGY

"Radio Bode's Law"

astrophysical interest: radio signature of exoplanet

RPW instrumentation added value

• Unique jovian system space weather (Solar Wind, lo torus...) via remote sensing and in situ measurements.

• Unique stereoscopic mission concept opportunity.

• Pluri-disciplinary science.

• Passive and reliable local plasma parameters diagnostics necessary for other instruments.

• Strong collaboration/enhanced science return between instrument teams (see MAPS group on Cassini)

 Strong heritage in the community (Cassini, STEREO, Bepi-Colombo/MMO, JUNO, RBSP...)