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- Main subject of this presentation:

Analyse

ionospheric electrodynamics, auroral signatures, and
magnetosphere-ionosphere coupling

for
a flux rope event (FLR) 1n the magnetotail current sheet
with an associated traveling compression region (TCR)

in the lobe

- Main data sources:

Magnetosphere: Cluster spacecraft
Ionosphere: MIRACLE observation network




- The MIRACLE network
consists of:

e IMAGE magnetometers
e STARE radar
e all-sky cameras

A large number of other
relevant instruments exists
in Northern Fennoscandia,
for example:

 EISCAT

e SuperDARN radars
riometers
other optical instruments

@ Magnetometer October 2004
O All-sky camera
O Magnetometer and all-sky camera




2) Cluster/MIRACLE event study:
- Analysis of topological correspondances in the 1onosphere
and magnetosphere during a flux rope event in the
magnetotail

- Data: Cluster FGM, CIS; IMAGE satellite WIC; MIRACLE, EISCAT |
- Event: August 13, 2002, ~ 2300 UT

continuation of magnetic fields (Amm and Viljanen,

I
|
: EPS, 1999; Vanhamiki et al., EPS, 2003)
I

|
|
I
MIRACLE: 2D and 1D SECS techniques for upward :
I
- Reference: Amm et al., Ann. Geophys., 2005 (submitted). |

- Main open question:
e Are there any topological correspondences in the ionosphere to the flux rope
event in the magnetotail, and if yes which ones?




- lTonospheric signatures of a flux rope? Aren’t those magnetically
closed and force-free structures?

1= [deally yes, but:

e The ideal solutions imply perfect symmetry and extend to infinity
= once that symmetry is broken, especially at the ends of the structure in
symmetry direction, they must be either not force-free or/and not closed
= current may “leak’ into/ out of structures

» For topological correspondences, regions do not necessarily need to be
magnetically connected
(e.g., a TCR 1is a topological correspondence to a flux rope in the
magnetosphere)
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e Cluster 3 most equatorward, in plasma sheet boundary
layer (PSBL); Cluster 1,2,4 in northern lobe



10d around event):

2002-08-13 (HIA:C1,C3 ; CODIF:C4)

e Flux rope event at ~ 2300 UT

 Dipolarisation and plasma sheet S VU 5PV RPN

expansion at onset of fast flow
event ~ 2306 UT

perp_temp(eV)
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Flux rope Fast flow
(see detail) events



2002-08-13 (HIA:C1,C3 ; CODIF:C4)
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direction), but s/c not directly in center
of FLR

b) Cluster 1,2,4:
e TCR motion with = 1200 km/s in +X
and -Y direction
= FLR direction (as 90° rotated TCR
direction of motion) = 29° clockwise
from +Y (seen from +Z direction)
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* Flux rope event observed during late substorm expansion phase
(also weak electron injection at LANL 2250 UT)



2D representations:

* Lens-shaped region of auroral FUV
emission minimum at mapped FLR
position, well aligned with mapped FLR
orientation

blue: FLR direction from 90° rotated TCR
motion;

red: FLR direction from Cluster3 magnetic
longitude in degrees ﬁeld dal'a



226750

=s-
= ll‘ltffll.//ff

226650
L5 - \\\\\\\\\\\

725~
\\\'\\\

wlli/!/zzf
,,,,,,,,,, TR
anticlockwise
(upward FAC)
current vortices,
comoving with = 2
km/s eastward =

mapped bulk
velocity at Cluster

) 1\\\\\\\\\\\= //; Fay
NN T

longitude in degrees

longitude N degrees

225850
25- ‘
_— : : 725+
b l Aol : ‘
I.x A NN .
- \\\ JJ(_o 72 ll“"—l,.,“,‘,,‘.,,,'—— A
\\.\\\\\\s. -.t’fl" 15- N\ : : [ L
‘/ NN S NN N aN N~ .ot .
v 71N ; :
- ! \\\\\\\\\\\\\\SQ-‘
7 70.5- ~ : .
M\\\\\.\\~-/ ' CloSeSst 1o vortex
\\\\\\\\\—'/

695~ e,
Lo S
////)ﬂ_\\\\\\\\\\‘“

Ia tude eey
(53 de in degl‘
oS

I N
g ™~ \\\\\\\\\ S --q=
05 ~ e :
£ - : : j s
g e ;
89~
///_—v 69-
: 68.5-
‘ )/////F~\\\\\\\\\\\
SN 68- N
' ’T‘\\L-.fyl1,1.,\1—\——'\"" .
= 675 N : e
i 30
15 20 25 400 mA/m
longitude in degrees

longitude in degrees

* Direction of tilt angle between current vortices well aligned with FLLR direction
 Downward FAC vortex “hits” Cluster just when it also measures downward FAC



e (Hall) conductance structure as determined
from EISCAT scans before and after
intensification:

e Hall conductance drop visible still 5 min
after FLR area has passed EISCAT beam
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- Conclusions from August 13, 2002, FLLR event:

Topological correspondences in the ionosphere to FLLR encounter in magnetotail:

e A lens-shaped auroral emission minimum with decreased conductance at FLR
footprint, well aligned with the FLLR orientation

e A downward FAC area colocated with the auroral emission minimum, moving
eastward at = 2 km/s, corresponding to the mapped bulk velocity of the closest
Cluster spacecraft

e Comoving with the leading downward FAC area a trailing upward FAC area at
lower latitudes; the tilt angle between the two FAC area corresponds well to tilt
angle of FLR; electric field is consistent with current flow from downward to
upward FAC region

* No topological correspondence to fast TCR movement in the 1onosphere

Possible interpretation:

e Do the FAC regions demarcate the “edges” of the FLR in symmetry direction?

 In this case, = parallel current directions in FLR and in 1onosphere
= competing current closure process?



- Some general conclusions:

e (Cluster/ MIRACLE studies (and Cluster/ ground-based
studies 1n general) are a powerful tool to study the
spatio-temporal ionosphere-magnetosphere coupling

e Jonospheric signatures of magnetospheric features do

frequently exist, but often advanced data analysis
methods are needed to recognize and analyse them




- Small advert in the end... :

e Want to see more Cluster/
ground-based studies?

= Interim review of
Cluster/ground based
research in latest Annales
Geophysicae issue!

Amm et al., Ann. Geophys.,
23, 2129 -2170, 2005.
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Abstract. A little more than four years after its launch, the
first magnctospheric, multi-satcllitc mission Cluster has al-
ready tremendously contributed to our understanding about
the coupled solar wind - magnetosphere - ionosphere sys-
tem. This is mostly due (o its abilily, for the first time, to
provide instantancous spatial views of structures in the sys-
tem, to separate temporal and spatial variations, and to derive
velocitics and dircctions of moving structurcs. Ground-bascd
data have an important complementary impact on Cluster-
related research, as they provide a larger-scale context to put
the spacecraft data in, allow to virtually enlarge the space-
crafts’ ficld of view, and make it possible to study in detail
the coupling between the magnetosphere and the ionosphere
in a spatially extended domain. With this paper we present
an interim review of cooperative research done with Clus-
ter and ground-based instruments, including the support of
other space-based data. We first give a short overview of the
instrumentation used, and present some specific data analysis
and modeling techniques that have been devised for the com-
bined analysis of Cluster and ground-based data. Then we
review highlighted results of the research using Cluster and
ground-based data, ordered into dayside and nightside pro-
cesses. Such highlights include, for example, the identifica-
tion of the spatio-temporal signatures of the different modes
of reconnection on the dayside, and the detailed analysis of
the electrodynamic magnetosphere-ionosphere coupling of
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bursty bulk flows in the tail plasma sheet on the nightside.
The aim of this paper is to provide a “sourccbook” for the
Cluster and ground-based community that summarises the
work that has been done in this field of research, and to iden-
Lify open questions and possible directions for [uture studies.

Keywords. Ionosphere (Auroral ionosphere) — Magneto-
spheric physics (Magnetosphere-ionosphere interactions;
General or miscellanous)

1 Introduction

The terrestrial magnetosphere is a cavily carved out of the
solar wind by the terrestrial magnetic field. To zeroth order
it is a consequence of the high solar wind conductivity, and
its dimensions reflect a stress balance between the solar wind
dynamic pressure and the magnetic pressure inside the cav-
ity. The magnetosphere is coupled to the solar wind across
its outer boundary - the magnetopause - and to the Earth’s
upper atmosphere via the ionosphere and thermosphere. Key
processes at work at the magnetopause are magnetic recon-
nection, particle entry, and large- and small-scale waves that
arise at and around this boundary. Electric currents couple
the magnetosphere and ionosphere, and large-scale convec-
tion within the magnetosphere drives ionospheric currents,
and has significant effects on the motion of the neutral atmo-
sphere at thermospheric altitudes. The energy that powers




