Shock-Generated Energetic Particle Populations & Their Effects in the Foreshock Region

Eberhard Möbius & H. Kucharek

Space Science Center and Department of Physics University of New Hampshire

Thanks to all our collaborators, especially: M. Scholer, R. Behlke

L. Kistler, B. Klecker, C. Mouikis, University of New Hampshire

Shock-Generated Energetic Particle Populations & Their Effects in the Foreshock Region

- Introduction and Motivation
- Reflection at the Quasi-Perpendicular BS
- Beam Effects Upstream
- Diffusion and Gradients at the Quasi-Parallel BS
- Effects Upstream (SLAMS)

University of New Hampshire

Shocks are Powerful Astrophysical Accelerators

- Supernova Shocks thought to generate Cosmic Rays
- Shocks are also found around stellar and galactic winds

SN1987A

- Shocks also accelerate particles in the heliosphere
- And thus can be studied locally!

Let's get the details at the Bow Shock With Cluster!

Bow Shock Configurations

Ion Populations at the Quasi-Perpendicular Shoc

- Gyrating Ions Convected Downstream
 - turn into anisotropic distribution (low M_A)
 - turn into isotropic distribution (high M_A) Sckopke et al., 1983, 1990
- Reflected Ion Beam along the Magnetic Field
 - Energy condition in DeHofman-Teller Frame Paschmann et al., 1980
 - Usually with very few α-Particles *Ipavich et al.*, 1988; Fuselier, 1994

Adiabatic Reflection (Sönnerup 1969)

 $\frac{\cos\Theta_{Vn}}{\cos\Theta_{Bn}}$

And then a Miracle occurs!! (no explanation for reflection)

Constant Energy in deHT Frame
Thomsen 1986

Cluster Double-Star Symposium

Source of Field-aligned Beams Theoretical Considerations

Evidence for generation through Adiabatic Reflection of solar wind and through Leakage of heated magnetosheath ions

Schwartz and Burgess 1984

Assumptions:

- Planar shock
- DeHofmann Teller frame proper reference frame

Symposium

Leakage ||B from the Magnetosheath

 $\cos\Theta_{\mathrm{Vn}}$

Beam Mostly Energy too low!

Constant Energy in deHT Frame

Thomsen 1986

Cluster Double-Star Symposium

9/30/2005

Beam Generation:

Thermalization vs. Immediate Scattering

- Thermalization in the Downstream Region and leakage upstream along B, where $\Theta_{\rm BN}$ small enough to allow escape (Max. $\Theta_{\rm BN}$)

 Edmiston et al., 1982, Tanaka et al., 1983
- Reflection in the Ramp and immediate scattering by Alfvén waves; Ions ||B can escape along B Scholer et al., 2000 (Scattering depends on M_A)

 Multiple encounters Burgess; Oka et al. 2005

BS Transition 3-31-01 ($\Theta_{RN} = 78^{\circ}$) Flux of the Beam ≈x50 lower than on 1-24-01 20 **78.30** Cluster S/C1 CODIF H+ 3-31-2001 Cluster S/C1 CODIF H+ 03-3-2001 2000 1 Beam at low N 2.0∑10 ⁻⁸ 2000 Gyrating 7.4∑ 10 ⁻⁹ 2.8∑10 ⁻⁹ 1000 1000 1.0∑10 ⁻⁹ V_{Perp} [km/sec] 5.3∑ 10 ⁻¹¹€ 2.0∑ 10 ⁻¹¹83 -1000 -1000 Beam 7.2∑10 ⁻¹² 2.75 10 -12 -₂₀₀₀ 18:54:57-18:55:13 -₂₀₀₀ 18:48:17-18:48:33 1.0∑10 ⁻¹² -2000 -1000 1000 2000 1000 -2000 2000 -1000 V_{Par} [km/sec] V_{Par} [km/sec] 1849 1850 UT

New Understanding of Field-Aligned Beams

- At Quasi-Perpendicular Shocks Ion Beams
 Emerge from Reflected Gyrating Ions
 - Scattering appears to happen immediately in the shock ramp
 - Thermalization downstream of the shock does not seem to play a role
- How Does that Lead to the Energy Condition Observed by *Paschmann et al. 1980*?
 - Direct reflection in dHT frame not viable

Specular Reflection (as for gyrating ions +scattering)

$$V'_{r||}/V_{i} \leq$$

 $\frac{\cos\Theta_{Vn}}{\cos\Theta_{Rn}}$

* $(2\cos^2\Theta_{Bn} - 1)$

Problem: What tells the waves to scatter in the dHT Frame?

Constant Energy in deHT Frame

Thomsen 1986

9/30/2005

Cluster Double-Star Symposium

Are Beams Tied to Waves

Ion Beam Observations To Be Performed/In Progress.

- Energies:
 - Peak, Minimum, Maximum in Spectra How effective is the energy transfer?
- Pitch-Angle Distribution

 Consistent with Escape Condition?
- Angle of Peak

 Is it //B or offset according to Transformation?
- Shock Dynamics: Changes Transformation Condition Graduate Student Work (Bin Miao)
- All as Function of: Θ_{Bn} , Θ_{Vn} , M_A , β , $\triangle \Phi$ $+ \dots$

First Crack at Dependence on Shock Potential

First Crack at Dependence on Shock Potential

9/30/2005

Cluster Double-Star Symposium

Waves & Particles Obey Gyro-Resonance Condition

- ω $\mathbf{k}_{\parallel}\mathbf{v}_{\parallel}$ + $\Omega_{\mathbf{p}}$ = $\mathbf{0}$
- Energy of original beam conserved
- However, switch
 between Beam and
 Waves + GyroPhase Bunching
 not fully
 understood!

9/30/2005

Clust

Is the Quasi-Parallel Shock Simpler?

- Here is where 1st Order Fermi Acceleration is supposed to work?
- lons easily cross the shock repeatedly along the field lines
- But: How to get Particles with already some energy relative to SW?

Quasi-Parallel Shock

Quasi-Parallel Shock

Energetic Ions

- Energetic Ion Flux shouldProduce Waves
- Waves should Scatter Ions
- Diffusion should Build up

 Gradient of Upstream Ions $L(E) = \kappa(E)/v_{SW}$
- Then the Fermi Process should Work!

Ion Gradient at the Quasi-Parallel Shock

- Cluster allowed first direct observation of the Upstream Ion Gradient
- Visible on inbound orbit, but measured between S/C 1 and 4
 Kis et al. 2004

Star Symposium

Ion Gradient at the Quasi-Parallel Shock

Exponential Density Gradient

E-folding: $\approx 0.5-3 \text{ R}_{\text{E}}$ Generally Shorter than in Statistical Study

Statistics Smoothes!

Subsolar location ideal!
With radial B (ISEE!)
-> Next years of Cluster!

Parallel Shocks are Messy

- Often Short Large Amplitude Magnetic Structures (SLAMS) are strewn across the Shock's staging area
- They show many features of the shock, but are not the shock just yet
- Cluster allows detailed view into their evolution, 3D field and particle structure see Talk by *Lucek et al.* (3.1)

Let's Conclude with "Rock Around the Bow Shock"

Quasi-Perpendicular Shock

- Beams come from Ramp and not Downstream
- Unified view of Gyrating Ions and Beams: Beams evolve from Reflected Gyrating Ions
- Waves in the Ramp seem to play a role
- Beams generate Wave-Particle interaction
- Quasi-Parallel Shock
 - Scattering of Diffuse Ions establishes gradient: Fermi process necessary consequence
 - Upstream of the BS can be choppy: SLAMS decelerate and heat SW, reflect Ions

