1
/

SOFTWARE REQUIREMENTS DOCUMENT FOR

O

ECh0Sim: A Simulator for the Exoplanet
Characterization Observatory

ECHO-TN-002-CF-SRD
Version 2.0
November 26, 2013

Contributors:

Andreas Papageorgiou, Ingo Waldmann, Enzo Pascale, Carrie MacTavish,
Alexander Amaral-Rogers, Jean-Philippe Beaulieu, Céline Cavarroc,
Vincent Coudé du Foresto, Marc Ollivier , Locke Spencer, Bruce Swinyard,
Marcel Tessenyi and Giovanna Tinetti

Table of Contents

1 Introduction 1
1.1 Purpose of Document 1
1.2 Project Scope and Objectives 1
1.3 Acronyms 1
1.4 Useful References 1

2 ECh0Sim Code Organisational Overview 1
2.1 Data e 2
2.2 Classes e e 2
2.3 Modules 3
2.4 Library oL 3

3 EChO0Sim Architectural Design 3
3.1 Astroscene Module 4

3.1.1 Module Aim 4
3.1.2 Inputs 4
3.1.3 Outputs e 6
3.1.4 Algorithm 7
3.1.5 Classmethods: 8
3.1.6 Libraries: 9
3.1.7 Functional requirements: 11
3.1.8 Open Issues and Improvements: 12
3.2 Foregrounds Module oo 12
3.2.1 Module Aim 12
3.22 Inputs 12
3.2.3 Outputs 12
3.24 Algorithm 13
3.2.5 Libraries: 13
3.2.6 Functional requirements 14
3.2.7 Open Issues and Improvements: 14
3.3 Instrument Module. 14
3.3.1 Module Aim 14
3.3.2 Module Inputs 15
3.3.3 Module Outputs 15
3.34 Algorithm 15
3.3.5 Classes, Methods, Libs Used 17
3.3.6 Functional requirements 20
3.3.7 Openlssues e 21
3.4 Noise Module 22
3.4.1 Module Aim 22
3.42 Inputs 22
3.4.3 Outputs 22
3.4.4 Algorithm 22
3.4.5 Classes, Methods, Libs Used 23
3.4.6 Functional requirements 25
347 Openlssues e 25

1 Introduction

1.1 Purpose of Document

This document describes the software requirements and architecture of the simulation
tool ECh0Sim. In the Introduction, the project scope, as well as useful references and
acronyms are given. Section 2 provides an overview of the organisation of the ECh0Sim
directory structure and briefly outlines each of the modules, classes and internal libraries.
Finally, Section 3 provides a detailed description of the ECh0Sim architecture, including
details of the algorithms involved for each module.

1.2 Project Scope and Objectives

The purpose of this project is to develop a simulation tool for the Exoplanet Character-
ization Observatory. The software, ECh0Sim, will simulate the astrophysical scene (star
and transiting planet) as well as the stationary and dynamic characteristics of the in-
strument and observing strategy. The objective of the ECh0Sim software is to evaluate
critical design elements of the EChO instrument, as well as, evaluate impact of variations
in the system level design and implementation, setting benchmarks for the instrument
parameters. ECh0Sim is intended to provide the “ultimate” performance prediction. Users
of the tool are EChO collaborators.

1.3 Acronyms
SRD Software Requirements Document (this document)
URD User Requirements Document

TBD To Be Determined
FOM Figure of Merit

1.4 Useful References

e EChOSim: More about user requirements for software design can be found in the
ECh0Sim User Requirements Document (URD).

e EChO Instrument and Telescope: More information about the EChO mission can
be found in the documents FChO Science Requirements Document, EChO Payload
Definition Document and EChO Mission Proposal available on

http://echo-spacemission.eu,/

2 ECh0Sim Code Organisational Overview

The main is called echosim.py. It initialises the parameter object and initialises and runs
each module in turn. The program is organised according to the following structure. The
main, echosim.py and the parameter file, echosim.par, are in the root directory. Then
four subdirectories exist:

a data directory (with further self-explanatory subdirectories)

e classes: containing the object classes called on by the modules

e data: containing planetary and stellar data files

e docs: containing documentation files and images
e library: containing functions shared by several classes and modules.

e modules: containing the higher-level code, calling classes and library functions

2.1 Data

The data subdirectory stores all the useful data of the system (for instance quantum
efficiency, spectra, ...). Currently there is:

data/instrument: containing dichroic emission and transmission files; quantum effi-
ciency tables.

data/planetary: containing planetary SED files for primary and secondary eclipses
data/telescope: containing mirror emissivity and reflectivity files; solid angle tables

data/stellar: containing stellar SED files from SP_Phoenix.zip provided by Ignasi
Ribas; stellar limb-darkening parameter by Claret (2000).

2.2 Classes

classes/channel.py This placeholder class is in the process of being removed as it’s no
longer required.

classes/detector.py Object to hold detector-specific parameters and provide methods

for the calculation of detector relevant functions such as focal plane ilumination and
PSF.

classes/instrument.py Object to hold instrument-specific specific parameters such as
dichroic emissivity /reflectivity and provide convenience methods for calculatting the
instruments emission.

classes/internal.py: Object to hold the simulation’s main variables (spectra) and
pass them from one module to the next.

classes/noise.py: Object to hold noise specific data and provide convenience methods
for applying noise to the simuation’s timelines.

classes/parameters.py: Object to hold the all the parameters defined in the parameter
file

classes/planet.py: Object to hold planet-specific parameters and provide methods
for calculation of planetary emission /transmission spectra, solve orbital motions and
generate light curves.

classes/star.py: Object to hold star-specific parameters and read-in star spectra

classes/telescope.py Object to hold telescope-specific parameters and provide meth-
ods for the simulation of the thermal environment and to apply telescope related
effects to spectra from the Astroscene and Foreground modules.

classes/position.py Object to hold right-ascention (RA), declination (Dec), and ob-
serving date of the observed planet-star system. This information is needed for a
time and position dependent Zodi emission calculation.

classes/progress.py Object tracking and displaying calculation progress, providing
estimated completion time of overall simulation.

2.3 Modules

All of the ECh0Sim modules are in the Modules directory (Note: the observation pipeline is
supplied with the EChOSimcode but not formally part thereof). Details of the functionality
and I/0 for each module are given in the Section 3. Currently defined modules include:

modules/Astroscene_module.py — Initialises star class, planet class and calculates light
curves. Returns light-curves.

modules/Foreground_module.py — Calls zodi method and fills internal data with re-
trieved values.

modules/Instrument_module.py — Initialises the telescope and instrument classes. Ap-
plies instrumental effects to incoming light from Astroscene and Foreground modules.
Provides basic detector functionality (SNR calculations)

modules/Noise_module.py — Module that calculates all different contributions of noise
(pointing, temperature, gains) to the data timelines.

modules/Output_module.py — Module that collates all focal plane illuminations (per
time stamp) and generating fits-standard image files. These fits files follow the
standard astronomical format which can be read in and analysed by the observation
pipeline of generic astronomical packages.

2.4 Library

This directory contains all the useful functions that are neither modules nor methods
(for instance, functions which require different classes or are used by several classes).
Currently defined libraries include:

library/library_occultquad.py: computes the light-curve for occultation of a quadrat-
ically limb-darkened source without microlensing. Based on Mandel & Agol (2002)
and Eastman & Agol (2008).

library/library_astroscene.py: includes the eccentric orbital motion generator; a
black-body function generator; and smaller multiply used functions for interpolation,
array sorting, etc..

library/library_foreground.py: simple JWST-MIRI paramaterisation of the Zodia-
cal light.

library/library_output.py: supporting functions (array sorting, dictionary collating,
etc.)for the Output Module.

3 ECh0Sim Architectural Design

Figure 1 shows an overview of the entire ECh0Sim architecture. This tool will consist of
several modules. The main program, echosim.py, initially calls Astroscence_module.py
for a given input source, simulating the observed sky. Next each of the modules describing
the EChO instrument is called, following the input radiation along it’s journey to the final
detector destination. Thus a simulated EChO observation is generated for a single source
and the raw focal plane illumination data is provided as output. This can be read in by
the external Observation Pipeline or other standard astronomical data reduction software
packages. In this section the algorithmic details of each of the modules are given.

EChoSim

‘ Read parameter file]

Astroscene module
Simulates emission from the

e e Foregrounds module

Simulates emission between
star and telescope

Instrument module
Simulates emission from
telescope and instruments

Noise module
Adds different types of noise
to simulated time-lines

Output module
Outputs simulated frames
to fits files

Figure 1: Overview of ECh0Sim Architecture. The main calls a number of modules describing the sky
and the payload instrument parameters.

3.1 Astroscene Module
3.1.1 Module Aim

This module simulates the ‘astrophysical scene’ and generates the data to be ‘observed’ by
ECh0Sim. Starting from an input of stellar SEDs and pre-specified planet, star and orbital
parameters. Astroscene will generate a series of stellar spectra modulated over time with:
1) the planetary light curve, including the 2) planetary transmission/emission spectrum,
3) the planetary phase curve, 4) time correlated stellar noise and 5) exozodiacal effects.
The calculations of the observables are summarised below with block diagram illustrating
the architecture in figure 2.

1. Given the set stellar temperature, the appropriate SED file is read and scaled to a
user specified apparent magnitude.

2. The average surface temperate of the planet is calculated (given user provided orbital
parameters) and the appropriate planetary SED for primary or secondary eclipse is
select or approximated by a black-body distribution.

3. Given user supplied parameters, the planetary orbit is simulated and the wavelength
dependent planetary SED used to set appropriate transit depths of either the primary
or secondary eclipse.

4. The stellar SED and the generated planetary lightcurves are combined to give a
time-resolved observation of the planet-star system.

For more information on the algorithm, see below and on the underlying theory see
URD [v2.0] Section 3.1.

3.1.2 Inputs

Input files:

Ve

-

Astroscene module
Read Stellar Astroscene input Read Planet Read Planet
SEDs parameters Emission SEDs transmission SED
Star SED selector or Planetary emission l Planetary
BlackBodY calculator model transmission model
L 1 I I
tellar Fl Stellar limb
Stel a'I L darkening Exoplanet
2L calculator Ja] Exoplanet Zodi model
Orbital model [phase I1]
A |
Exoplanet
I model
Calculate
Observed Star-
Planet System

Figure 2: Block diagram of Astroscene_module.py. Simulates the astrophysical scene and includes a
description of the star and transiting planet. All time-dependent effects (limb darkening, transit profile,
stellar variability) are included. The output are stellar spectra modulated over time by the planetary

primary /secondary eclipse.

Name Type

params Parameters.class

| Description

This parameter object is initialized by the main
script and contains simulation relevant parame-
ters. The parameters contained in this object are
read in from the ‘echosim.par’ file.

/data/stellar | Folder

Containing stellar LTE spectra from 3070K -
7200K and solar gravity and metalicities. Spectra
are generated using the Phoenix code and pro-
vided by Ignasi Ribas.

SPTyp_KH.dat | File

Stellar spectra index file used by ECh0Sim.

quadratic.dat | File

Containing limb-darkening coefficients for varying
temperatures, metalicities and logg from Claret
(2000).

/data/planet | Folder

Folder containing planetary transmission and
emission spectra for various planet types

Inputs in Parameter class:

Name

Units

Description

star_dist pc Observer-star distance
star_radius Re Stellar radius
star_temp K Stellar effective temperature
star_logg m /s? Stellar surface gravity
star_mh Fe/H Stellar metallicity
spectral_res R Spectral resolution (Note: legacy, now defined by de-
tector module)
oversamplefact | double | Spectral oversampling (Note: legacy, now calculated
internally)
star_ra deg. Stellar right ascension
star_dec deg. Stellar declination
star_date JD Julian date of observation
planet_radius R jupiter | Radius of planet
planet_mass M jupiter | Mass of planet
planet_albedo NA Exoplanetary bond-albedo
planet_period Days Orbital period
planet_A AU Orbital semi-major axis
planet_inc degrees | Orbital inclination (0-90 deg.)
planet_ecc NA Orbital eccentricity (0-1)
planet_omega degrees | Argument of periastron for an eccentric orbit
planet_nu kg Molecular weight of the exoplanetary atmosphere
planet_blackbody | string Set to T: using blackbody emission, F: use provided
emission spectra
planet_prisec string Set to ‘pri’ for primary eclipse and ‘sec’ for secondary
eclipse
planet_specfile | string Allows the read-in of a transmission /emission spectrum
as atmospheric spectrum
planet_specconst | double | Conversion factor (if needed) to convert spectrum file
into F,/F; or (R,/R;)?
planet_sampling | seconds | Exposure time (including all overheads)
planet_obsrate | integer | Fraction of time observed with respect to total transit

duration (typically: > 2)

3.1.3 Outputs

Outputs are written into the intdata object. F'tot is also returned into main as standard

output.

Description

astro_Ftot 2d array ‘Observed’ spectra, rows: wavelength axis,
columns: time axis
astro_Fstar 1d array Single stellar spectrum

astro_wavelengthgrid | 1d array (um) | Wavelength values for astro_Ftot and

astro_Fstar

astro_lightcurve 1d array Normalised light curve model
astro_phasegrid 1d array Orbital phase values for astro_lightcurve
astro_timegrid 1d array (sec) | Time stamps for observations, first spec-
trum at t =0
astro_totalobstime | seconds Total observation time
astro_tempplanet K Average planetary surface temperature
astro_tempstar K Stellar surface temperature, may differ from

parameter file

3.1.4 Algorithm

1.

10.

11.

Both star.class and planet.class check the input parameters provided in params
for consistency and either issue an error report and de-bugging information for fatal
errors or issues a warning and set the faulty parameters to their lower or upper
bounds.

The star.class is now initialised and input parameters are converted into SI units.

. Given the stellar temperature in params, star.class will select the best matching

stellar SED from the data archive. If stellar temperatures are outside the range of
3070 - 7200K, it will issue a warning and approximate the SED with a black-body
curve of the given temperature.

. The stellar SED is now interpolated to the spectral resolution set in params and

trimmed to the spectral set in params. Should the spectral range set exceed the
stellar SED spectral range, star.class will zero-pad the spectral edges.

The stellar SED is scaled to the user defined apparent magnitude and together with
the corresponding wavelength grid returned by star.class.

When primary eclipse is specified in params, star.class will load quadratic limb-
darkening coefficients for the specified stellar type and linearly interpolate between
pass-band coefficients for all ECh0Sim wavelengths.

The planet.class is now initialised and input parameters are converted into SI
units.

. Given inputs set in params, planet.class estimates the total transit duration and

calculates the time and orbital phase grids of the observation as well as transit mid-
points.

. The average planetary surface temperature is calculated and given the user input

either steps 10 - 12 or steps 13 - 14 are executed.

Primary eclipse case: The planetary surface gravity is estimated and the atmospheric
scale height is calculated.

Given the planetary temperature, planet.class reads in the appropriate transmis-
sion model and scales the atmospheric amplitude to 5x scale height. If specified in
the parameter file, a pre-calculated transmission spectrum can also be read in.

12. The total apparent primary eclipse depth is now calculated as function of wavelength.

13. Secondary eclipse case: The appropriate planetary day-side emission model is read
in (given the planetary temperature) and scaled by the star-planet surface ratios. If
no emission models are found for the given planetary temperature, planet.class
will approximate the day-side emission using a black-body distribution. If specified
in the parameter file, a pre-calculated emission spectrum can also be read in.

14. The total apparent secondary eclipse depth is calculated as function of wavelength.

15. The planet.class now solves the Keplarian orbit of the exoplanet for user specified
orbital parameters and uses outputs from steps 6, 12 and 14 to set the wavelength
dependent eclipse depths.

16. The outputs of star.class and planet.class are now combined to form the ‘ob-
served’ array with flux, time and wavelength as their axes.

3.1.5 Class methods:

Star class
Location: classes/star.py
Description: Class calculating stellar SEDs and stellar limb-darkening parameters

Methods:

e paramcheck(): Checks all class relevant input parameters contained in params for
internal consistency and either issue an error report and de-bugging information for
fatal errors or issues a warning and set the faulty parameters to their lower or upper
bounds.

e wave_grid(): Calculates the correct wavelength grid for the observations given
Detector Module parameter settings.

e select_star(): Finds closest match between user specified stellar temperature and
available stellar SED in ‘data/stellar’. If stellar temperature in params exceeds limits
of available stellar SEDs, it will issue a warning and set the default to a black-body
curve instead.

e do_spectrum() : Loads the selected stellar SED from ‘data/stellar’ and interpolates
it onto a given resolution grid. Alternatively it calculates the black-body function
for given stellar temperature for the same resolution grid.

e get_limbdarkening(): When primary transit is selected in params, stellar limb
darkening coefficients corresponding to the host-star are loaded and interpolated
over the ECh0Sim wavelength grid.

e mag_scaler(): Scales the stellar SED to the user specified stellar distance.

Planet class

Location: classes/planet.py

Description: Class calculating planetary SEDs, the Keplarian orbits and primary /secondary
eclipses

Methods:

paramcheck() : Checks all class relevant input parameters contained in params for
internal consistency and either issue an error report and de-bugging information for
fatal errors or issues a warning and set the faulty parameters to their lower or upper
bounds.

orbital_model(): Calculates the total transit time and average planetary temper-
ature; sets up the time and orbital phase arrays for the observation sequence; solves
Kepler’s equations and calculates the eclipse model.

exoplanet_model_pri(): Calculates the planetary surface gravity; the atmospheric
scale height; loads the appropriate stellar transmission spectrum for the given plan-
etary temperature, interpolates the spectrum to the correct spectral resolution and
scales it using the atmospheric scale height.

exoplanet_model_sec(): Loads the appropriate planetary emission spectrum and
interpolates to the correct spectral resolution. If no appropriate file is found, the
planetary spectrum is approximated using a black-body distribution.

3.1.6 Libraries:

library occultquad

Location: library /library _occultquad.py
Description: Library containing Mandel & Agol (2002) light curve modelling code

Methods:

ellke(k) : Computes Hasting’s polynomial approximation for the complete elliptic
integral of the first (ek) and second (kk) kind.

ellpic_bulirsch(n,k): Computes the complete elliptical integral of the third kind
using the algorithm of Bulirsch (1965).

occultquad(z,ul,u2,p0): Computes the light curve for occultation of a quadrati-
cally limb-darkened source without microlensing, Mandel & Agol (2002) and Eastman
& Agol (2008).

occultquad2(z,p0, gamma): Quadratic limb-darkening light curve; cf. Section 4
of Mandel & Agol (2002).

occultuniform(z, p): Uniform-disk transit light curve (i.e., no limb darkening).

depthchisq(z, planet, data): Computes model chi-squared.

library astroscene

Location: library /library _astroscene.py
Description: Library containing general functions and Keplarian orbit model

Methods:

tscompress(data,status) : compresses the timelines using a jpeg-like compression.
find_nearest(arr,value): find nearest value in array.
sortarray(x,y): function sorting array to ascending values of x.

drange(start, end=None, inc=None): range function that does accept float ar-
guments.

e interpolator(xold,yold,xstart,xend,diff): interpolates values to given grid.

e eccentric(phase,inc,aR,ecc,omega): function calculating the star planet sepa-
ration,z, for the case of eccentric and circular orbits.

e planck(wave, temp): Calculates a black-body function for a given wavelength
and temperature.

10

3.1.7

Req. ID
ASTROSCN-FUNC-010

Functional requirements:

Description
The module will require a parameter file as input

ASTROSCN-FUNC-020
ASTROSCN-FUNC-021
ASTROSCN-FUNC-022

The module will require stellar SEDs as input

The module will require a stellar SED index file as input

The module will require a stellar quadratic limb darkening li-
brary as input

ASTROSCN-FUNC-030
ASTROSCN-FUNC-031
ASTROSCN-FUNC-032

The module will require planetary emission SEDs as input
The module will require planetary transmission SEDs as input
The module will require planetary SED index file as input

ASTROSCN-FUNC-040

The module will convert all parameters into SI units

ASTROSCN-FUNC-050

ASTROSCN-FUNC-051

The module will read in the appropriate stellar SED given the
user input

The module will approximate the stellar SED using a black-body
function if required

ASTROSCN-FUNC-060

ASTROSCN-FUNC-061

The module will interpolate and trim the stellar SED to user
defined resolution

The module will compute a common wavelength grid for the
given resolution

ASTROSCN-FUNC-070

The module will scale the stellar SED to user specified apparent
magnitude

ASTROSCN-FUNC-080

ASTROSCN-FUNC-081

ASTROSCN-FUNC-082

The module will read in stellar limb-darkening parameters from
Claret (2000)

The module will select correct limb-darkening parameters given
user specified stellar temperature and solar gravity and metal-
icity

The module will interpolate limb-darkening parameters for the
common wavelength grid

ASTROSCN-FUNC-090

ASTROSCN-FUNC-091

The module will read in the appropriate planetary SED given
the user input

The module will approximate the planetary emission SED if
required

ASTROSCN-FUNC-100

The module will read in the appropriate planetary SED given
the user input

ASTROSCN-FUNC-110
ASTROSCN-FUNC-111

The module will compute the planetary temperature
The module will compute the planetary atmospheric scale height

ASTROSCN-FUNC-120
ASTROSCN-FUNC-121
ASTROSCN-FUNC-122

ASTROSCN-FUNC-123

The module will compute the total transit time

The module will solve the Keplarian orbit

The module will compute observed primary and secondary
eclipse light curves

The module will compute one light curve model per spectral
resolution point

ASTROSCN-FUNC-130

ASTROSCN-FUNC-131

ASTROSCN-FUNC-132

The module will read in time-series of correlated stellar noise
taken from Kepler or CoRoT space mission archives

The module will interpolate stellar noise time-series onto the
common orbital phase grid

The module will scale the stellar noise using a wavelength de-
pendent function to be specified

ASTROSCN-FUNC-140

The module will modulate the stellar SED with the wavelength
dependent planetary light curves to obtain a time-series of mod-
ulated stellar SEDs

11

Foregrounds module

I t Zodi(A Input Envionment Input
[Input RA. Dec, t][el] [DOC [phase Il] HEP Rate

Zodi modi JWST-MIRI
or User supplied Kelsell HEP model [phase II]
et al. model

vy

Figure 3: Block diagram of Foregrounds_module.py. The foregrounds module includes any static or
dynamic signal sources which act as a source of noise between the exoplanet signal and the EChO telescope
optics. Sources of such noise include high energy particles and/or zodiacal light.

3.1.8 Open Issues and Improvements:

1. ASTROSCN-FUNC-13* functions are not currently implemented and belong to a
later development stage.

3.2 Foregrounds Module
3.2.1 Module Aim

Figure 3 shows a block diagram for this module. The aim of this module is simulate the
foreground sources which act as a source of noise between the exoplanet signal and the
EChO telescope optics. For more information on the underlying theory see URD [v2.0]
Section 3.2.

3.2.2 Inputs

Name Type Description

params | Parameters.class | This parameter object is initialised by the main script
and contains simulation relevant parameters. The pa-
rameters contained in this object are read in from the
‘echosim.par’ file.

intdata | Internaldata.class | This is a common object containing the output data
from all the modules. The input wavelength array grid
from astroscene is loaded from this object. Zodi values
are generated for each wavelength in the input grid.

Inputs in Parameter class:

Name - Units Description
star_ra degrees | RA of star
star_dec degrees | DEC of star
star_date days Julian date
run_foreground | NA Turns foreground module on(1)/off(0)
zodi_level NA Indicates zodi level; 1=min, 2=average, 3=max (default)

3.2.3 Outputs

Outputs are written into the intdata object.

Name Type Description

zodi

1d array | Zodiacal light value in W/m? /micron/sr for each astroscene defined
wavelength grid point.

3.2.4 Algorithm

1. If the input parameter run_foreground is set (1) then Foreground_module.py is

run. Otherwise there is no foreground inclusion.

. The params and intdata objects are passed to the Foreground_module.py which in
turn passes the source position (ra/dec) and date (from params) and the wavelength
array (from intdata) along to the zodi method (part of the 1ibrary_foreground.py).
Note position and date info are not yet used.

. The zodi method calculates the zodi light foreground contribution for each wave-

length in the astro_wavelengthgrid. The model is based on a simple (position
independent) JWST-MIRI model.

. The zodi value is scaled by a predetermined factor (min, average, max) which is set
in the parameter file (zodi_level).

. The final output zodi array is returned in units of W/m?/micron/sr and written to
the indata.zodi object to be passed onto the Instrument_module at a later point.

3.2.5 Libraries:

library foreground

Location: library /library foreground.py
Description: Library containing simple JWST-MIRI paramaterisation of the Zodiacal
light.

Methods:

e zodi(star_ra, star_dec, star_date, wave, zodi_level): Computes flux of
zodiacal light foreground in W/m?/micron/sr. Currently based on simple JWST-
MIRI parameterization (position info not yet used).

e foreground_file(wave, filename): Load pre-specified foreground emission files
and interpolate the emission on a given wave grid.

13

3.2.6 Functional requirements

Req. ID | Description

FOREGND-FUNC-010 (Obsolete) The module will require a parameter file as input
FOREGND-FUNC-012 | (Obsolete) The module will require astroscene wavelength arvay

astaphut
FOREGND-FUNC-013 | The module will require a parameter and an internal object as

input

FOREGND-FUNC-020 | The module will determine source position on the sky
FOREGND-FUNC-021 | The module will determine zodi flux [at current source position]
for each wavelength in ascroscene grid

FOREGND-FUNC-030 | The module will require input parameters describing the high
energy particle impact on pixels; including pixhit and nonoppiz
FOREGND-FUNC-031 | The module will require input parameters describing the detector
specific timings associated with readout and integration; includ-
iﬂg tramp and lread

FOREGND-FUNC-040 | The module will calculate t.s¢, the effective integration time, tak-
ing high energy particle hits into account.

3.2.7 Open Issues and Improvements:

1. A later version will include a more sophisticated zodi model which takes into account
source position on the sky. This will involve implementation of FOREGND-FUNC-020
and an upgrade to FOREGND-FUNC-021.

2. FOREGND-FUNC-030/031/040 functions are not currently implemented and belong to
a later development stage.

3.3 Instrument Module.
3.3.1 Module Aim

Figure 4 shows a block diagram for this module. This module is responsible for simu-
lating the behaviour of the instruments with its main function to call the output from
the Astroscene, pass through the telescope class, apply relevant optical-chain effects to
the spectra, convolve with the instrument line function, re-bin to the passband spectral
resolution wavelength grid and integrate across each finite element. For more information
on the underlying theory see URD [v2.0] Section 3.4.

The functionalities of the module can be summarised in three categories:

1. Call telescope.class: The telescope class calls data from the astroscene and the
foreground modules stored in the intdata common object to calculate the telescope
relevant effects and apply to the signal output. This class interpolates all relevant pre-
calculated data to the astroscene wavelength grid, calculates the flux contribution
from the scattered light of the baffles, zodiacal light, mirrors (assuming modified
blackbody profiles) and returns Ptot and Psig.

2. Call instrument.class: This class (section 3.3.5) contains methods to call all rele-
vant pre-calculated data contained in parameter files located in the ’/data/instrument /’
directory such as dichroic transmissions and emission profiles, and interpolates to the
astroscene wavelength grid. The class contains methods to generate black body pro-
files when called in the body of the instrument module code, generate Instrument
Line Functions (ILF) per channel and convolve with the spectra, a method to re-bins
to spectral resolution grids, integrates across each finite element of the passband.

14

Instrument module

Input
Transmission
emissivity
reflectivity

solid_angle

Input
Transmission
model

Input Thermal
environment

Input Channel
emission
model

emis:

Calculate Telescope Calculate Instrument

sion emission —

Input Channel
spectral
resolution

Detector choice]

-

[Spectrometer design,

Detector (MTF)
Image generator per
channel

S

Figure 4: Block diagram of Instrument Module. This includes thermal emission from telescope as well
as all of the EChO apparatus.

3. Calculate the power passing through each channel: This is the main func-
tionality of the module where the dichroic transmission acts to split the input signals
into channels, the emission from the dichroics are applied, the signal is convolved
with the ILF and re-binned according to the channel spectral resolution. The 2D
data arrays containing the Pchannel tot det and Pchannel sig det are stored in
the intdata object along with the relevant output wavelength grid.

4. Detector function:

Temporary function acting as the detector module contained

in the instrument.class. Takes the output from the instrument module and converts
Pchannel tot det, Pchannel sig det (W) to Ichannel tot, Ichannel sig (electrons
/ second / pixel) and calculates the SNR.

3.3.2 Module Inputs

Name Type Description
params | Parameters.class | This parameter object is initialised by the main script
and contains simulation relevant parameters. The pa-
rameters contained in this object are read in from the
‘echosim.par’ file.
intdata | Internaldata.class | This is a common object containing the output data

from all the modules. The input wavelength array grid
from astroscene is loaded from this object. Zodi values
are generated for each wavelength in the input grid.

3.3.3 Module Outputs

The output of this module is the updated internal object with all of the Q tot data
now containing contributions from telescope and instrument emission.

3.3.4 Algorithm

1. Calls holding temperatures of the mirrors from the parameters file and creates tem-
perature profiles for the mirrors (assumes static temperature).

15

10.

11.

. Combines Fsig (W m™2 sr~

. Loads mirror reflectivity, emissivity and solid angle data files stored in the /data/telescope

file path. Generates transmission profile and interpolates parameters to the as-
troscene wavelength grid. Interpolator is zero padded such that where the spectral
range is outside the wavelength range of the external files, returns zero values.

. Calculates the emitted power assuming a blackbody profile modified by the emissivity

of the mirrors for MNUM of mirrors in the telescope optics for all observation times,
NTimeslices. Returns Ptel (W micron1)

. Loads Fzodi (W m~2 sr™! micron™!) from the foregrounds module if it has been

selected and converts to power in the telescope beam by multiplying by the etendue.
If the Foreground module has been turned off then this will return zero values.
Returns Pzodi (W micron™1)

. Loads pre-calculated scattered light flux, Fscat and interpolates with zero padding to

the astroscene wavelength grid. Where the spectral range is outside the wavelength
range of the external files, returns zero values. Converts the flux to power in the
telescope beam, Pscat by applying the etendue of the system.

! micron™1), the output of the astroscene module with

the transmission, tau and effective gathering area, A _eff to derive Psig: the power
of the signal observed (W micron1!). Psig = Fsig * A_eff * tau

Combines Fsig with Ptel, Pzodi, Pscat, and tau to calculate the total power trans-
mitted through the telescope, Ptot (W micron=!) for all observation times calculated
in the astroscene module.

Ptot = ((Fsig + Pzodi) * tau + Pscat) * A eff

. Stores interpolated parameters, system etendue, Ptel, Pscat, Pzodi, Ptot and Psig,

data to intdata common object to be saved later.

. Loads external dichroic transmission, emission data profiles stored in the /data/instrument

file path and interpolates with zero padding to astroscene wavelength grid. Where
the spectral range is outside the wavelength range of the external files, returns zero
values.

Calls holding temperatures of the dichroics from the parameters file and creates
temperature profiles for the mirrors (assumes static temperature for all observation
times).

Creates 3D holding data cubes to store the spectra of each observation passing
through each channel. Loops over the number of instruments, InstNum and ap-
plies the relevant transmission profile. Adds the component of emission from the
dichroics assuming modified blackbody function to the power passed through the
system:

e Pchannel 1 - Ptot * (1-taul) + etal * B1 * A_eff * Solid angle

e Pchannel 2 - (Ptot * taul + etal * B1 * A_eff * Solid angle) * (1 - tau2) +
eta2 *B2 * A _eff * Solid _angle

e Pchannel 3 - |(Ptot * taul + etal * B1 * A eff * Solid angle) * tau2 + eta2
*B2 * A eff * Solid _angle)] * (1 - tau3) + eta3 * B3 * A_eff * Solid angle

e Pchannel 4 - [(Ptot * taul + etal * B1 * A _eff * Solid angle) * tau2 + eta2
*B2 * A eff * Solid _angle)] * tau3 + eta3 * B3 * A_eff * Solid angle

16

12.

13.

14.

15.

16.

17.

18.

19.

Generates an Instrument Line Function (ILF) per channel assuming a top hat func-
tion with width defined by the smallest lambda* R of the passband. Area of the top
hat is normalised to 1.0

Convolves the ILF with Pchannel tot and Pchannel sig using convolve() function.
Convolution acts to smooth the spectra.

Calculates a wavelength grid based on the spectral resolution of the channels start-
ing from the lower wavelength edge of the passband and interpolates the convolved
spectra to this new grid.

Integrates the convolved spectra over each finite element of the spectral bins to
return Pchannel tot det, Pchannel sig det (W). Takes the centre of each finite
bin as the final wavelength grid. Writes Pchannel tot det, Pchannel sig det and
the wavelength grid to the intdata object.

Loads external detector quantum efficiency data from data/instruments/ file path
and interpolates with zero padding the quantum efficiency to the wavelength grid
produced during the integration of the finite element. Loads pixel numbers illumi-
nated by the psf and the integration time.

Converts Pchannel tot det, Pchannel sig det (W) to Ichannel tot det, Ichan-
nel sig det (electrons/second/pixel) by multiplying by h * ¢ / lambda and then
multiplying by the interpolated quantum efficiency / number of illuminated pixels.

Calculated signal to noise ratio assuming photon noise. Where the signal to noise
ratio is given by:
Ichannel sig det * integration time / SQRT (Ichannel tot det * integration time).

Writes the data to the intdata object to be saved further on in the code.

3.3.5 Classes, Methods, Libs Used

telescope.class: The telescope class is responsible for simulating the behaviour of the
telescope and its main aim is to apply telescope-relevant effects to spectra produced by
the Astroscene and Foreground Modules and combine them.

The functionality of the class can be summarised in four categories:

1.

Read telescope parameter files: Most of the information describing the telescope
is contained in parameter files located in the /data/telescope/ directory. This
information is often a function of wavelength and it has to be interpolated into the
simulations wavelength grid. The class provides methods for reading the required
data and interpolating it to the required wavelength grid.

. Simulate telescope thermal environment: A factor that affects the telescope

contribution to the observed data is the temperature of the telescope at a given time.
The class provides a method(get_Temperature) that simulates the thermal environ-
ment. Currently the output temperature is a combination of constant with added
normal random noise (to be updated to Brownian noise). Plans for the temperature
time-line to incorporate temperature arising from the observation geometry (ra, dec,
solar aspect angle) are TBIL

. Generate telescope emission: The method(calc_Ptel)take the calculated ther-

mal environment and calculates the emitted and transmitted telescope power assum-
ing a modified blackbody.

17

4. Apply telescope effects to input spectra from Astroscene: This is the main
functionality of the class where telescope effects are applied to the simulated spectra
created by the Astroscene and Foreground modules. This function is performed by
the calc_Ptot_Psig method of this class.

telescope.class methods:

e __init__(params.class, intdata.class): Initialisation of the Telescope object
requires as input a parameters object, containing the simulation parameters and the
common data object, containing the wavelength grid used by the Astroscene module
to produce the simulated spectra and the resultant spectra. Upon initialisation,
all telescope parameters are read in from the relevant files and interpolated to the
wavelength grid provided as input.

e get_Temperature(intdata.class): This method takes mirror temperature param-
eters from the .par file and generates a temperature output array for the observation
duration incorporating normal random noise (Brownian noise TBI) and tempera-
ture as a function of the geometry of the observation (ra, dec, solar aspect angle)
(TBI). The output of this method is a 2D float array of temperature vs.time for each
telescope mirror.

e get_Emissivity(string File): This method loads the telescope emissivity param-
eters from a file and interpolates to the wavelength grid of the astroscene. The output
is a 2D float array containing emissivity vs. wavelength for each telescope mirror.

e get_Reflectivity(string File): This method loads mirror reflectivity parame-
ters from a file and interpolates to the wavelength grid of the astroscene.

The output is a two element list containing:

1. a 2D float array storing reflectivity vs wavelength for each telescope mirror.
2. a 1d float array which is the product of all the mirror components reflectivities.

e get_Solid_Angle(string File): Reads telescope solid angle from a file using solid
angle pathname stored in the params file and interpolates to the wavelength grid
used by the astroscene. The output is a 1D float array containing the solid angle
subtended by the beam vs. wavelength in units of steradians.

e get_Scattered_Light (string File): This method reads in a file containing tele-
scope scattered light as a function of time and wavelength, and to interpolate to
time /wavelength grids. The ouput of the method is a 2D array containing the tele-
scope scattered light as a function of wavelength and time.

e calc_Ptel(params.class, intdata.class, 2d emissivity, 2d reflectivity):
This method takes as input the mirror temperature profiles generated by the calc_Temperature
method, the interpolated emissivity and reflectivity tables and models the telescope
mirrors as modified black bodies.

The output of this method is a 1D array containing the telescope emissivity. The
telescope emissivity is calculated as:

((Ay Ey BB(T1) Ry + Ay E; BB(T2))R; + A3 E3 BB(T3))Ry+ Ay Ey BB(T4)
where A;, F;, R; and T are the emitting area, emissivity, reflectivity and tempera-
tures of mirror i.

e calc_FZodi(intdata.class): This method takes as input zodi light produced by
the Foreground Module and interpolates to the wavelength grid produced by the as-
troscene. The output of the method is a 1d array containing the interpolated emission
of zodiacal light with respect to wavelength and is taken to be time independent.

18

e calc_Ptot_Psig : This method is the main function of the class and takes the Fsig
output from the astroscene, the interpolated data from Fzodi, reflectivity, emissivity,
solid angle, telescop scattered light and telescope emission to produce Ptot and Psig.
All data is written to the intdata object to be called by users when required. The
output from this method is a two element list containing:

1. a 2D float array containing the product of all the inputs at the telescope aperture
given by:
Ptot = ((ondi + Fsig)T + Ptel + Pscat)Q Aeff

2. a 2D float array containing the power of the signal that is collected by the
telescope and passed through its optics and is calculate as:

Psig = Llsig 7€) Aeff

instrument.class: The Instrument object takes input from the params file to per-
form various tasks required by the instrument module such as interpolating the dichroic
transmissions/emissions profiles, generating the Instrument Line Function, interpolating
to a spectral resolution grid and integrating across each bin.
instrument.class methods:

requires as input a parameters object, containing the simulation parameters and the
common data object, containing the wavelength grid used by the Astroscene module
to produce the simulated spectra and the resultant spectra. Upon initialisation, all
instrument parameters are read in from the relevant files and interpolated to the
wavelength grid provided as input.

e __init__(params.class, intdata.class): Initialisation of the Instrument object

e Load_Dichroic_transmission(): Reads dichroic transmission file and interpolates
to astroscene wavelength grid.

e Load_Dichroic_emission(): Reads dichroic emission file and interpolates to as-
troscene wavelength grid.

e get_Dichroic_Temperature(): Returns the temperature of the diachroics as a func-
tion of time and wavelength.

e Calc_Emission_Di: Takes optics temperature derived in get DichroicTemperature()
and generates blackbody emission at astroscene wavelengths for the dichroic channel.

e Generate_ILF: Takes passband data from params and models the Instrument Line
Function (ILF) as tophat of width equal to the finest spectral resoltion of the pass-
band, with area normalised to 1.

e Get_Pchannel_Components(2d Ptot, 2d Psig):Takes the emission and transmis-
sion profiles of the dichroics and passes Ptot and Psig through the system, effectively
splitting the received power into channels. Returns 2 3D data cubes containing the
transmitted power through the optics.

e Convolve(2d Input, 2d ILF): Convolves Pchannel tot, Pchannel sig with the In-
strument Line Function (ILF).

e Generate_R_bins(1d channel): Generates new bins for the spectra from the spec-
tral resolution and the maximum /minimum wavelengths of the passbands.

e Downsample(2d P_det_tot, 2d P_det_sig, 1d wave, 1d channel): Interpolates
total and signal spectra to the spectral resolution of the passband and integrates
across the element.

19

e Detector(2d P_det_tot, 2d P_det_sig, 1d wave, 1d channel): Method acts
as a temporary detector module. Converts the input power into photons per second
falling on the detector. Multiplies by the instrument quantum efficiency to covert to
electrons / second.

3.3.6 Functional requirements

Req. ID ‘ Description

TELESCP-FUNC-010

The class will require a parameter as input

TELESCP-FUNC-020

The class will require a internaldata as input

TELESCP-FUNC-030

The class will read the emissivity of all telescope mirrors from a
parameter file. The emissivity for each mirror will be interpolated
to the waveleght grid provided by the Astroscene module

TELESCP-FUNC-040

The class will read the reflectivity of all telescope mirrors from
a parameter file. The reflectivity for each mirror will be interpo-
lated to the waveleght grid provided by the Astroscene module

TELESCP-FUNC-050

The class will read the transmission of all telescope mirrors from
a parameter file. The transmission for each mirror will be inter-
polated to the waveleght grid provided by the Astroscene module

TELESCP-FUNC-060

The class will require the emitting area of all telescope mirrors
as parameter input. The emitting area will be provided by the
input parameter object.

TELESCP-FUNC-070

The class will require the effective aperture of the telescope as
parameter input. The effective aperture will be provided by the
input parameter object.

TELESCP-FUNC-080

The class will read the telescope solid angle from a parameter file.
The telescope solid angle will be interpolated to the wavelength
grid provided by the Astroscene module

TELESCP-FUNC-090

TELESCP-FUNC-091

TELESCP-FUNC-092

TELESCP-FUNC-093

The class will simulate the telescope thermal environment for all
4 telescope mirrors as a function of time.

It will be possible to simulate the thermal environment as con-
stant temperature for the entire time-line. The temperatures to
be used will be provided by the input parameter object.

It will be possible to simulate the thermal environment as brow-
nian noise. The temperatures to be used will be provided by the
input parameter object.

It will be possible to simulate the thermal environment as a func-
tion of the observation geometry (ra, dec, solar aspect angle).

TELESCP-FUNC-100

The class will read the telescope scattered light from a parameter
file. The telescope scattered light will be interpolated to the
wavelength grid provided by the Astroscene module

TELESCP-FUNC-110

TELESCP-FUNC-111

TELESCP-FUNC-112

The class will apply and output the effect of telescope optics on
the signal produced by the Astroscene Module

The class will combine and output the effect of telescope optics,
telescope emission, telescope scattered light, foreground light on
the signal produced by the Astroscene Module

The spectra produced by the class will be placed in the
internaldata object.

20

Req. ID
INSTRUMENT-FUN-010

Description

The Instrument class will require a parameter as input

INSTRUMENT-FUN-020

The Instrument class will require intdata object as input

INSTRUMENT-FUN-030

The Instrument will load dichroic transmission from an exter-
nal file and interpolate to astroscene wavelength grid.

INSTRUMENT-FUN-040

The instrument will load dichroic emission from an external
file and interpolate to astroscene wavelength grid.

INSTRUMENT-FUN-050

INSTRUMENT-FUN-051

The instrument will load dichroic temperatures and generate
temperature profiles.

The instrument will incorporate Brownian noise temperature
fluctuations in the dichroics.

INSTRUMENT-FUN-060

The instrument will calculate the emission profiles of the
dichroics for all observation times based on a blackbody.

INSTRUMENT-FUN-070

The instrument will calculate an Instrument Line Function
(ILF) that has a top-hat form, with width defined by the finest
spectral resolution of the passband and area normalised to 1.0.

INSTRUMENT-FUN-080

The instrument will split the input of the astroscene into
channels by combining with the transmission profiles of the
dichroics and will include the emission from the dichroics them-
selves.

INSTRUMENT-FUN-090

The instrument will convolve the ILF with the channel spectral
profiles.

INSTRUMENT-FUN-100

The instrument will generate spectral resolution wavelength
grids.

INSTRUMENT-FUN-110

The instruments will down sample the convolved spectral pro-
files to that of the spectral resolution wavelength grids.

INSTRUMENT-FUN-120

The instrument will integrate across each finite element of the
spectral resolution wavelength grid.

INSTRUMENT-FUN-130

The instrument will divide the down sampled spectra by
h*c/lambda to convert from W to photons per second.

INSTRUMENT-FUN-140

The instrument will load the quantum efficiency of the detec-
tors from an external file and interpolate to the down sampled
wavelength grid.

INSTRUMENT-FUN-150

The instrument will multiply the resulting spectra by the inter-
polated quantum efficiency and divide by the number of pixels
illuminated to return the current in the pixels. Units: electrons
/second /pixel

INSTRUMENT-FUN-160

The instrument creates the signal to noise ratio of the obser-
vation from: SNR =1 sig* t / SQRT (I tot * t) where t is
the integration time of each obhservation.

3.3.7 Open Issues

1. Currently the Telescope.class simulates the telescope thermal environment a time-
constant temperatures. Eventually, it will be possible to simulate the temperature as
brownian noise. Also not implemented is simulation of temperature as a function of
observation geometry. The latter will take some thinking on what is the best way to
input the necessary information and how to calculate the temperature as a function
of this input.

2. Currently the telescope scattered light is assumed to be zero.

21

3. During convolution of the ILF with Pchannel tot, Pchannel sig boundary effects
are seen.

4. Current modelling method of the instrument is comparable to radiometric models.
In the future a more detailed instrument modelling function will be implemented.
See URD (section 3.4) for development goals of the instrument.

5. Basic detector methods are contained within the Instrument.class. A separate detec-
tor module will be created as the more complex instrument modelling is initialised.

3.4 Noise Module
3.4.1 Module Aim

The Noise Module is responsible for simulating different types of noise and adding them
to the the simulated timelines3.4.7)

3.4.2 Inputs

Name Type Description

params | Parameters.class | This parameter object is initialised by the main script
and contains simulation relevant parameters. The pa-
rameters contained in this object are read in from the
‘echosim.par’ file.

intdata | Internaldata.class | This is a common object containing the output data
from all the modules. The input wavelength array grid
from astroscene is loaded from this object. Zodi values
are generated for each wavelength in the input grid.

3.4.3 Outputs

The output of this module is the updated internal object with all of the Q tot data now
containing contributions from noise due to telescope jitter, thermal variations, detector
relative gains and other.

3.4.4 Algorithm
e pointing jitter: The pointing jitter can be calculated by one of the following ways

1. From actual space telescope pointing data:

In this case a file containing an ra,dec pointing timeline is loaded. The average
of ra*cos(dec) and dec are removed from the ra and dec timelines respectively.
The mean of the absolute FFT of both ra and dec timelines is returned as the
power spectrum of instrument’s pointing. The returned pointing power spectrum
is multiplied by a gaussian random and along with and along with a normal
random distribution as the complex phase, it is inverse Fourier transformed to
generate a pointing timeline.

2. From a set of nodes describing pointing power spectrum:

In this case a set of nodes corresponding to [frequency, complex power| are pro-
vided from the parameters file. This nodes are used to construct the pointing
power spectrum, by joining the nodes with an exponential function. The result-
ing pointing power spectrum, along with a normal random phase distribution
is inverse Fourier transformed to create a pointing timeline, based on the input
model.

22

Noise module

Read real Read model
pointing data pointing data
1 1

Calculate pointing

jitter noise Apply detector relative
gains

Calculate readout
noise

Calculate shot noise
(photon + dark
current)

g |

Create pointing HK Combine noise
timeline sources

A vy

Figure 5: Block diagram of the Noise module, describing the different types of noise added to the simulated
time-lines.

e Brownian noise: Brownian noise calculated using the Wiener process of the cumu-
lative sum of white noise over the time domain.

1/v/(27o?t) x exp(—(x — mean x t)?/20°t)

e Photon noise:It is assumed that the photon flux is high enough that a gaussian
approximation is suitable.

e Detector readout noise: Readout noise is simulated as a gaussian random distri-
bution.

3.4.5 Classes, Methods, Libs Used

noise.class: The noise class is responsible for holding pointing data (either real data,
loaded from a file or simulated). In addition the class provides methods to apply noise to
the simulated timelines, provided by the Instrument module.

noise.class methods:

e loadDetectorRelativeGains ():Method that loads a fits file containing relative gains
for all the pixels in each detector.

e loadHerscelPointingModel(): Method that reads Herschel telescope pointing model
from a fits file. The fits file is expected to have data for frequency and power spec-
trum. The method returns the power spectrum and the corresponding frequency
array.

e loadHerscelPointingData(): Method that reads Herschel telescope pointing data
from a fits file. The fits file is expected to have data for RA, Dec, and time. The
method returns the average power spectrum of ra and dec, and the corresponding
frequency array

e getRandomHerschel (outputArrayLength, inJitterSeed): Method to return an
array of random numbers based on the power spectrum of Herschel telescope pointing
data.

23

makePointingJitterModel (inputNodes, maxFrequency, numSamples): Method to
return two arrays [frequency, Complex Power|, created from a list of (phase,power)
points. The returned arrays (as per requirement) have length which is a power of 2.

getPointingJitterTimeline (inArrayLength, inDeltaS, inPointingJitterNyqFreq,
inModelNodes, inJitterSeed): Method to create a simulated pointing jitter (delta
theta) time-line, given a model describing the jitter. The model is provided as a list

of (freq(Hz),Power) points, contained in inModelNodes. These are provided to the
makePointingJitterModel() method in order to create a complex frequency and a
complex power array. The method then returns:1. The jitter sampled at 1Hz to be

used as Housekeeping. 2. The jitter summed every samplingTime (inDeltaS) to be

used by Pointing Jitter(). 3. The (jitter)? summed every samplingTime (inDeltaS)

to be used by Pointing Jitter()

Brownian(): Brownian noise calculated using the Wiener process of the cumulative
sum of white noise over the time domain.

counter (): Takes the seed start point and the number of detectors and generates a
seed counter which is utilises using the next() function in each noise function.

ShotNoise(): Takes the detector timeline which has already been integrated by the
detector time and passes the corresponding photon noise. It is assumed that the
photon flux is high enough that a gaussian approximation is suitable.

Pointing_Jitter(F_eff, PSFy, PSFgrad,PSFgrad2, x, y, WidPix, Timeline,
JitterSeed): Takes the detector timeline which has already been integrated by the
detector time and passes the corresponding pointing jitter. It is given that the spec-
trometer has large stability in the wavelength axis and as such the jitter is modelled
as fluctuations around the y axis only.

Dark_Current (): Takes the dark current from the par file for the relevant channel
and generates a constant dark current value given an exponential function of detector
temperature.

Detector_Gain(timegrid, Lambda, Seed): Takes the mean expected gain from
the par file for the relevant channel and generates a random Brownian noise gain.

Detector_Readout(Timeline, sigma_RE, Seed): Takes the mean expected gain
from the par file for the relevant channel and generates a random Detector readout
noise.

24

3.4.6 Functional requirements

Req. ID
NOISE-FUN-010

Description
The Noise module will require a parameter as input

NOISE-FUN-020

The Noise module will require intdata object as input

NOISE-FUN-030
NOISE-FUN-031

NOISE-FUN-032

NOISE-FUN-033

The Noise module will be able to calculate pointing jitter timelines
The pointing jitter timelines may be calculated from the properties
of pre-existing timelines of earlier space telescopes.

The pointing jitter timelines may calculated on the fly from jitter
noise parameters provided in the parameter file.

The Noise module will provide pointing jitter timelines sampled at
a the simulated observation’s sampling rate, as well as, at a higher
sampling rate to simulate Housekeeping data.

NOISE-FUN-040

The Noise module will be able to apply relative gains to the timeline
of pixel of each detector.

NOISE-FUN-050

The Noise module will be able to apply photon noise to the timeline
of pixel of each detector.

NOISE-FUN-060

The Noise module will be able to apply relative gains to the timeline
of pixel of each detector.

NOISE-FUN-070

The Noise module will be able to apply read-out noise to the timeline
of pixel of each detector.

NOISE-FUN-080

The Noise module will be able to apply dark current noise to the
timeline of pixel of each detector.

3.4.7 Open Issues

None currently.

25

