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1 Introduction

1.1 Purpose of Document

This document describes the software requirements and architecture of the simulation
tool EChOSim. In the Introduction, the project scope, as well as useful references and
acronyms are given. Section 2 provides an overview of the organisation of the EChOSim
directory structure and brie�y outlines each of the modules, classes and internal libraries.
Finally, Section 3 provides a detailed description of the EChOSim architecture, including
details of the algorithms involved for each module.

1.2 Project Scope and Objectives

The purpose of this project is to develop a simulation tool for the Exoplanet Character-
ization Observatory. The software, EChOSim, will simulate the astrophysical scene (star
and transiting planet) as well as the stationary and dynamic characteristics of the in-
strument and observing strategy. The objective of the EChOSim software is to evaluate
critical design elements of the EChO instrument, as well as, evaluate impact of variations
in the system level design and implementation, setting benchmarks for the instrument
parameters. EChOSim is intended to provide the �ultimate� performance prediction. Users
of the tool are EChO collaborators.

1.3 Acronyms

SRD Software Requirements Document (this document)

URD User Requirements Document

TBD To Be Determined

FOM Figure of Merit

1.4 Useful References

� EChOSim: More about user requirements for software design can be found in the
EChOSim User Requirements Document (URD).

� EChO Instrument and Telescope: More information about the EChO mission can
be found in the documents EChO Science Requirements Document, EChO Payload
De�nition Document and EChO Mission Proposal available on

http://echo-spacemission.eu/

2 EChOSim Code Organisational Overview

The main is called echosim.py. It initialises the parameter object and initialises and runs
each module in turn. The program is organised according to the following structure. The
main, echosim.py and the parameter �le, echosim.par, are in the root directory. Then
four subdirectories exist:

a data directory (with further self-explanatory subdirectories)

� classes: containing the object classes called on by the modules

� data: containing planetary and stellar data �les
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� docs: containing documentation �les and images

� library: containing functions shared by several classes and modules.

� modules: containing the higher-level code, calling classes and library functions

2.1 Data

The data subdirectory stores all the useful data of the system (for instance quantum
e�ciency, spectra, . . . ). Currently there is:

data/instrument: containing dichroic emission and transmission �les; quantum e�-
ciency tables.

data/planetary: containing planetary SED �les for primary and secondary eclipses

data/telescope: containing mirror emissivity and re�ectivity �les; solid angle tables

data/stellar: containing stellar SED �les from SP_Phoenix.zip provided by Ignasi
Ribas; stellar limb-darkening parameter by Claret (2000).

2.2 Classes

classes/channel.py This placeholder class is in the process of being removed as it's no
longer required.

classes/detector.py Object to hold detector-speci�c parameters and provide methods
for the calculation of detector relevant functions such as focal plane ilumination and
PSF.

classes/instrument.py Object to hold instrument-speci�c speci�c parameters such as
dichroic emissivity/re�ectivity and provide convenience methods for calculatting the
instruments emission.

classes/internal.py: Object to hold the simulation's main variables (spectra) and
pass them from one module to the next.

classes/noise.py: Object to hold noise speci�c data and provide convenience methods
for applying noise to the simuation's timelines.

classes/parameters.py: Object to hold the all the parameters de�ned in the parameter
�le

classes/planet.py: Object to hold planet-speci�c parameters and provide methods
for calculation of planetary emission/transmission spectra, solve orbital motions and
generate light curves.

classes/star.py: Object to hold star-speci�c parameters and read-in star spectra

classes/telescope.py Object to hold telescope-speci�c parameters and provide meth-
ods for the simulation of the thermal environment and to apply telescope related
e�ects to spectra from the Astroscene and Foreground modules.

classes/position.py Object to hold right-ascention (RA), declination (Dec), and ob-
serving date of the observed planet-star system. This information is needed for a
time and position dependent Zodi emission calculation.

classes/progress.py Object tracking and displaying calculation progress, providing
estimated completion time of overall simulation.
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2.3 Modules

All of the EChOSimmodules are in the Modules directory (Note: the observation pipeline is
supplied with the EChOSimcode but not formally part thereof). Details of the functionality
and I/O for each module are given in the Section 3. Currently de�ned modules include:

modules/Astroscene_module.py � Initialises star class, planet class and calculates light
curves. Returns light-curves.

modules/Foreground_module.py � Calls zodi method and �lls internal data with re-
trieved values.

modules/Instrument_module.py � Initialises the telescope and instrument classes. Ap-
plies instrumental e�ects to incoming light from Astroscene and Foreground modules.
Provides basic detector functionality (SNR calculations)

modules/Noise_module.py � Module that calculates all di�erent contributions of noise
(pointing, temperature, gains) to the data timelines.

modules/Output_module.py � Module that collates all focal plane illuminations (per
time stamp) and generating �ts-standard image �les. These �ts �les follow the
standard astronomical format which can be read in and analysed by the observation
pipeline of generic astronomical packages.

2.4 Library

This directory contains all the useful functions that are neither modules nor methods
(for instance, functions which require di�erent classes or are used by several classes).
Currently de�ned libraries include:

library/library_occultquad.py: computes the light-curve for occultation of a quadrat-
ically limb-darkened source without microlensing. Based on Mandel & Agol (2002)
and Eastman & Agol (2008).

library/library_astroscene.py: includes the eccentric orbital motion generator; a
black-body function generator; and smaller multiply used functions for interpolation,
array sorting, etc..

library/library_foreground.py: simple JWST-MIRI paramaterisation of the Zodia-
cal light.

library/library_output.py: supporting functions (array sorting, dictionary collating,
etc. )for the Output_Module.

3 EChOSim Architectural Design

Figure 1 shows an overview of the entire EChOSim architecture. This tool will consist of
several modules. The main program, echosim.py, initially calls Astroscence_module.py
for a given input source, simulating the observed sky. Next each of the modules describing
the EChO instrument is called, following the input radiation along it's journey to the �nal
detector destination. Thus a simulated EChO observation is generated for a single source
and the raw focal plane illumination data is provided as output. This can be read in by
the external Observation Pipeline or other standard astronomical data reduction software
packages. In this section the algorithmic details of each of the modules are given.
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Figure 1: Overview of EChOSim Architecture. The main calls a number of modules describing the sky
and the payload instrument parameters.

3.1 Astroscene Module

3.1.1 Module Aim

This module simulates the `astrophysical scene' and generates the data to be `observed' by
EChOSim. Starting from an input of stellar SEDs and pre-speci�ed planet, star and orbital
parameters. Astroscene will generate a series of stellar spectra modulated over time with:
1) the planetary light curve, including the 2) planetary transmission/emission spectrum,
3) the planetary phase curve, 4) time correlated stellar noise and 5) exozodiacal e�ects.
The calculations of the observables are summarised below with block diagram illustrating
the architecture in �gure 2.

1. Given the set stellar temperature, the appropriate SED �le is read and scaled to a
user speci�ed apparent magnitude.

2. The average surface temperate of the planet is calculated (given user provided orbital
parameters) and the appropriate planetary SED for primary or secondary eclipse is
select or approximated by a black-body distribution.

3. Given user supplied parameters, the planetary orbit is simulated and the wavelength
dependent planetary SED used to set appropriate transit depths of either the primary
or secondary eclipse.

4. The stellar SED and the generated planetary lightcurves are combined to give a
time-resolved observation of the planet-star system.

For more information on the algorithm, see below and on the underlying theory see
URD [v2.0] Section 3.1.

3.1.2 Inputs

Input �les:
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Figure 2: Block diagram of Astroscene_module.py. Simulates the astrophysical scene and includes a
description of the star and transiting planet. All time-dependent e�ects (limb darkening, transit pro�le,
stellar variability) are included. The output are stellar spectra modulated over time by the planetary
primary/secondary eclipse.

Name Type Description

params Parameters.class This parameter object is initialized by the main
script and contains simulation relevant parame-
ters. The parameters contained in this object are
read in from the `echosim.par' �le.

/data/stellar Folder Containing stellar LTE spectra from 3070K -
7200K and solar gravity and metalicities. Spectra
are generated using the Phoenix code and pro-
vided by Ignasi Ribas.

SPTyp_KH.dat File Stellar spectra index �le used by EChOSim.
quadratic.dat File Containing limb-darkening coe�cients for varying

temperatures, metalicities and logg from Claret
(2000).

/data/planet Folder Folder containing planetary transmission and
emission spectra for various planet types

Inputs in Parameter class:
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Name Units Description

star_dist pc Observer-star distance
star_radius R� Stellar radius
star_temp K Stellar e�ective temperature
star_logg m/s2 Stellar surface gravity
star_mh Fe/H Stellar metallicity

spectral_res R Spectral resolution (Note: legacy, now de�ned by de-
tector module)

oversamplefact double Spectral oversampling (Note: legacy, now calculated
internally)

star_ra deg. Stellar right ascension
star_dec deg. Stellar declination
star_date JD Julian date of observation

planet_radius RJupiter Radius of planet
planet_mass MJupiter Mass of planet

planet_albedo NA Exoplanetary bond-albedo
planet_period Days Orbital period

planet_A AU Orbital semi-major axis
planet_inc degrees Orbital inclination (0-90 deg.)
planet_ecc NA Orbital eccentricity (0-1)

planet_omega degrees Argument of periastron for an eccentric orbit
planet_nu kg Molecular weight of the exoplanetary atmosphere

planet_blackbody string Set to T: using blackbody emission, F: use provided
emission spectra

planet_prisec string Set to `pri' for primary eclipse and `sec' for secondary
eclipse

planet_specfile string Allows the read-in of a transmission/emission spectrum
as atmospheric spectrum

planet_specconst double Conversion factor (if needed) to convert spectrum �le
into Fp/Fs or (Rp/Rs)

2

planet_sampling seconds Exposure time (including all overheads)
planet_obsrate integer Fraction of time observed with respect to total transit

duration (typically: > 2)

3.1.3 Outputs

Outputs are written into the intdata object. Ftot is also returned into main as standard
output.
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Name Type Description

astro_Ftot 2d array `Observed' spectra, rows: wavelength axis,
columns: time axis

astro_Fstar 1d array Single stellar spectrum
astro_wavelengthgrid 1d array (µm) Wavelength values for astro_Ftot and

astro_Fstar

astro_lightcurve 1d array Normalised light curve model
astro_phasegrid 1d array Orbital phase values for astro_lightcurve
astro_timegrid 1d array (sec) Time stamps for observations, �rst spec-

trum at t = 0
astro_totalobstime seconds Total observation time
astro_tempplanet K Average planetary surface temperature
astro_tempstar K Stellar surface temperature, may di�er from

parameter �le

3.1.4 Algorithm

1. Both star.class and planet.class check the input parameters provided in params
for consistency and either issue an error report and de-bugging information for fatal
errors or issues a warning and set the faulty parameters to their lower or upper
bounds.

2. The star.class is now initialised and input parameters are converted into SI units.

3. Given the stellar temperature in params, star.class will select the best matching
stellar SED from the data archive. If stellar temperatures are outside the range of
3070 - 7200K, it will issue a warning and approximate the SED with a black-body
curve of the given temperature.

4. The stellar SED is now interpolated to the spectral resolution set in params and
trimmed to the spectral set in params. Should the spectral range set exceed the
stellar SED spectral range, star.class will zero-pad the spectral edges.

5. The stellar SED is scaled to the user de�ned apparent magnitude and together with
the corresponding wavelength grid returned by star.class.

6. When primary eclipse is speci�ed in params, star.class will load quadratic limb-
darkening coe�cients for the speci�ed stellar type and linearly interpolate between
pass-band coe�cients for all EChOSim wavelengths.

7. The planet.class is now initialised and input parameters are converted into SI
units.

8. Given inputs set in params, planet.class estimates the total transit duration and
calculates the time and orbital phase grids of the observation as well as transit mid-
points.

9. The average planetary surface temperature is calculated and given the user input
either steps 10 - 12 or steps 13 - 14 are executed.

10. Primary eclipse case: The planetary surface gravity is estimated and the atmospheric
scale height is calculated.

11. Given the planetary temperature, planet.class reads in the appropriate transmis-
sion model and scales the atmospheric amplitude to 5× scale height. If speci�ed in
the parameter �le, a pre-calculated transmission spectrum can also be read in.
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12. The total apparent primary eclipse depth is now calculated as function of wavelength.

13. Secondary eclipse case: The appropriate planetary day-side emission model is read
in (given the planetary temperature) and scaled by the star-planet surface ratios. If
no emission models are found for the given planetary temperature, planet.class
will approximate the day-side emission using a black-body distribution. If speci�ed
in the parameter �le, a pre-calculated emission spectrum can also be read in.

14. The total apparent secondary eclipse depth is calculated as function of wavelength.

15. The planet.class now solves the Keplarian orbit of the exoplanet for user speci�ed
orbital parameters and uses outputs from steps 6, 12 and 14 to set the wavelength
dependent eclipse depths.

16. The outputs of star.class and planet.class are now combined to form the `ob-
served' array with �ux, time and wavelength as their axes.

3.1.5 Class methods:

Star class
Location: classes/star.py
Description: Class calculating stellar SEDs and stellar limb-darkening parameters

Methods:

� paramcheck(): Checks all class relevant input parameters contained in params for
internal consistency and either issue an error report and de-bugging information for
fatal errors or issues a warning and set the faulty parameters to their lower or upper
bounds.

� wave_grid(): Calculates the correct wavelength grid for the observations given
Detector_Module parameter settings.

� select_star(): Finds closest match between user speci�ed stellar temperature and
available stellar SED in `data/stellar'. If stellar temperature in params exceeds limits
of available stellar SEDs, it will issue a warning and set the default to a black-body
curve instead.

� do_spectrum(): Loads the selected stellar SED from `data/stellar' and interpolates
it onto a given resolution grid. Alternatively it calculates the black-body function
for given stellar temperature for the same resolution grid.

� get_limbdarkening(): When primary transit is selected in params, stellar limb
darkening coe�cients corresponding to the host-star are loaded and interpolated
over the EChOSim wavelength grid.

� mag_scaler(): Scales the stellar SED to the user speci�ed stellar distance.

Planet class
Location: classes/planet.py
Description: Class calculating planetary SEDs, the Keplarian orbits and primary/secondary
eclipses

Methods:
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� paramcheck(): Checks all class relevant input parameters contained in params for
internal consistency and either issue an error report and de-bugging information for
fatal errors or issues a warning and set the faulty parameters to their lower or upper
bounds.

� orbital_model(): Calculates the total transit time and average planetary temper-
ature; sets up the time and orbital phase arrays for the observation sequence; solves
Kepler's equations and calculates the eclipse model.

� exoplanet_model_pri(): Calculates the planetary surface gravity; the atmospheric
scale height; loads the appropriate stellar transmission spectrum for the given plan-
etary temperature, interpolates the spectrum to the correct spectral resolution and
scales it using the atmospheric scale height.

� exoplanet_model_sec(): Loads the appropriate planetary emission spectrum and
interpolates to the correct spectral resolution. If no appropriate �le is found, the
planetary spectrum is approximated using a black-body distribution.

3.1.6 Libraries:

library_occultquad
Location: library/library_occultquad.py
Description: Library containing Mandel & Agol (2002) light curve modelling code

Methods:

� ellke(k): Computes Hasting's polynomial approximation for the complete elliptic
integral of the �rst (ek) and second (kk) kind.

� ellpic_bulirsch(n,k): Computes the complete elliptical integral of the third kind
using the algorithm of Bulirsch (1965).

� occultquad(z,u1,u2,p0): Computes the light curve for occultation of a quadrati-
cally limb-darkened source without microlensing, Mandel & Agol (2002) and Eastman
& Agol (2008).

� occultquad2(z,p0, gamma): Quadratic limb-darkening light curve; cf. Section 4
of Mandel & Agol (2002).

� occultuniform(z, p): Uniform-disk transit light curve (i.e., no limb darkening).

� depthchisq(z, planet, data): Computes model chi-squared.

library_astroscene
Location: library/library_astroscene.py
Description: Library containing general functions and Keplarian orbit model

Methods:

� tscompress(data,status): compresses the timelines using a jpeg-like compression.

� find_nearest(arr,value): �nd nearest value in array.

� sortarray(x,y): function sorting array to ascending values of x.

� drange(start, end=None, inc=None): range function that does accept �oat ar-
guments.
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� interpolator(xold,yold,xstart,xend,diff): interpolates values to given grid.

� eccentric(phase,inc,aR,ecc,omega): function calculating the star planet sepa-
ration,z, for the case of eccentric and circular orbits.

� planck( wave, temp ): Calculates a black-body function for a given wavelength
and temperature.
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3.1.7 Functional requirements:

Req. ID Description

ASTROSCN-FUNC-010 The module will require a parameter file as input
ASTROSCN-FUNC-020 The module will require stellar SEDs as input
ASTROSCN-FUNC-021 The module will require a stellar SED index �le as input
ASTROSCN-FUNC-022 The module will require a stellar quadratic limb darkening li-

brary as input
ASTROSCN-FUNC-030 The module will require planetary emission SEDs as input
ASTROSCN-FUNC-031 The module will require planetary transmission SEDs as input
ASTROSCN-FUNC-032 The module will require planetary SED index �le as input
ASTROSCN-FUNC-040 The module will convert all parameters into SI units
ASTROSCN-FUNC-050 The module will read in the appropriate stellar SED given the

user input
ASTROSCN-FUNC-051 The module will approximate the stellar SED using a black-body

function if required
ASTROSCN-FUNC-060 The module will interpolate and trim the stellar SED to user

de�ned resolution
ASTROSCN-FUNC-061 The module will compute a common wavelength grid for the

given resolution
ASTROSCN-FUNC-070 The module will scale the stellar SED to user speci�ed apparent

magnitude
ASTROSCN-FUNC-080 The module will read in stellar limb-darkening parameters from

Claret (2000)
ASTROSCN-FUNC-081 The module will select correct limb-darkening parameters given

user speci�ed stellar temperature and solar gravity and metal-
icity

ASTROSCN-FUNC-082 The module will interpolate limb-darkening parameters for the
common wavelength grid

ASTROSCN-FUNC-090 The module will read in the appropriate planetary SED given
the user input

ASTROSCN-FUNC-091 The module will approximate the planetary emission SED if
required

ASTROSCN-FUNC-100 The module will read in the appropriate planetary SED given
the user input

ASTROSCN-FUNC-110 The module will compute the planetary temperature
ASTROSCN-FUNC-111 The module will compute the planetary atmospheric scale height
ASTROSCN-FUNC-120 The module will compute the total transit time
ASTROSCN-FUNC-121 The module will solve the Keplarian orbit
ASTROSCN-FUNC-122 The module will compute observed primary and secondary

eclipse light curves
ASTROSCN-FUNC-123 The module will compute one light curve model per spectral

resolution point
ASTROSCN-FUNC-130 The module will read in time-series of correlated stellar noise

taken from Kepler or CoRoT space mission archives
ASTROSCN-FUNC-131 The module will interpolate stellar noise time-series onto the

common orbital phase grid
ASTROSCN-FUNC-132 The module will scale the stellar noise using a wavelength de-

pendent function to be speci�ed
ASTROSCN-FUNC-140 The module will modulate the stellar SED with the wavelength

dependent planetary light curves to obtain a time-series of mod-
ulated stellar SEDs
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Figure 3: Block diagram of Foregrounds_module.py. The foregrounds module includes any static or
dynamic signal sources which act as a source of noise between the exoplanet signal and the EChO telescope
optics. Sources of such noise include high energy particles and/or zodiacal light.

3.1.8 Open Issues and Improvements:

1. ASTROSCN-FUNC-13* functions are not currently implemented and belong to a
later development stage.

3.2 Foregrounds Module

3.2.1 Module Aim

Figure 3 shows a block diagram for this module. The aim of this module is simulate the
foreground sources which act as a source of noise between the exoplanet signal and the
EChO telescope optics. For more information on the underlying theory see URD [v2.0]
Section 3.2.

3.2.2 Inputs

Name Type Description

params Parameters.class This parameter object is initialised by the main script
and contains simulation relevant parameters. The pa-
rameters contained in this object are read in from the
`echosim.par' �le.

intdata Internaldata.class This is a common object containing the output data
from all the modules. The input wavelength array grid
from astroscene is loaded from this object. Zodi values
are generated for each wavelength in the input grid.

Inputs in Parameter class:
Name Units Description

star_ra degrees RA of star
star_dec degrees DEC of star
star_date days Julian date

run_foreground NA Turns foreground module on(1)/o�(0)
zodi_level NA Indicates zodi level; 1=min, 2=average, 3=max (default)

3.2.3 Outputs

Outputs are written into the intdata object.
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Name Type Description

zodi 1d array Zodiacal light value inW/m2/micron/sr for each astroscene de�ned
wavelength grid point.

3.2.4 Algorithm

1. If the input parameter run_foreground is set (1) then Foreground_module.py is
run. Otherwise there is no foreground inclusion.

2. The params and intdata objects are passed to the Foreground_module.py which in
turn passes the source position (ra/dec) and date (from params) and the wavelength
array (from intdata) along to the zodimethod (part of the library_foreground.py).
Note position and date info are not yet used.

3. The zodi method calculates the zodi light foreground contribution for each wave-
length in the astro_wavelengthgrid. The model is based on a simple (position
independent) JWST-MIRI model.

4. The zodi value is scaled by a predetermined factor (min, average, max) which is set
in the parameter �le (zodi_level).

5. The �nal output zodi array is returned in units of W/m2/micron/sr and written to
the indata.zodi object to be passed onto the Instrument_module at a later point.

3.2.5 Libraries:

library_foreground
Location: library/library_foreground.py
Description: Library containing simple JWST-MIRI paramaterisation of the Zodiacal
light.

Methods:

� zodi(star_ra, star_dec, star_date, wave, zodi_level): Computes �ux of
zodiacal light foreground in W/m2/micron/sr. Currently based on simple JWST-
MIRI parameterization (position info not yet used).

� foreground_file(wave, filename): Load pre-speci�ed foreground emission �les
and interpolate the emission on a given wave grid.
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3.2.6 Functional requirements

Req. ID Description

FOREGND-FUNC-010 (Obsolete) The module will require a parameter file as input
FOREGND-FUNC-012 (Obsolete) The module will require astroscene wavelength array

as input
FOREGND-FUNC-013 The module will require a parameter and an internal object as

input
FOREGND-FUNC-020 The module will determine source position on the sky
FOREGND-FUNC-021 The module will determine zodi �ux [at current source position]

for each wavelength in ascroscene grid
FOREGND-FUNC-030 The module will require input parameters describing the high

energy particle impact on pixels; including pixhit and nonoppix
FOREGND-FUNC-031 The module will require input parameters describing the detector

speci�c timings associated with readout and integration; includ-
ing tramp and tread

FOREGND-FUNC-040 The module will calculate teff , the e�ective integration time, tak-
ing high energy particle hits into account.

3.2.7 Open Issues and Improvements:

1. A later version will include a more sophisticated zodi model which takes into account
source position on the sky. This will involve implementation of FOREGND-FUNC-020
and an upgrade to FOREGND-FUNC-021.

2. FOREGND-FUNC-030/031/040 functions are not currently implemented and belong to
a later development stage.

3.3 Instrument Module.

3.3.1 Module Aim

Figure 4 shows a block diagram for this module. This module is responsible for simu-
lating the behaviour of the instruments with its main function to call the output from
the Astroscene, pass through the telescope class, apply relevant optical-chain e�ects to
the spectra, convolve with the instrument line function, re-bin to the passband spectral
resolution wavelength grid and integrate across each �nite element. For more information
on the underlying theory see URD [v2.0] Section 3.4.

The functionalities of the module can be summarised in three categories:

1. Call telescope.class: The telescope class calls data from the astroscene and the
foreground modules stored in the intdata common object to calculate the telescope
relevant e�ects and apply to the signal output. This class interpolates all relevant pre-
calculated data to the astroscene wavelength grid, calculates the �ux contribution
from the scattered light of the ba�es, zodiacal light, mirrors (assuming modi�ed
blackbody pro�les) and returns Ptot and Psig.

2. Call instrument.class: This class (section 3.3.5) contains methods to call all rele-
vant pre-calculated data contained in parameter �les located in the '/data/instrument/'
directory such as dichroic transmissions and emission pro�les, and interpolates to the
astroscene wavelength grid. The class contains methods to generate black body pro-
�les when called in the body of the instrument module code, generate Instrument
Line Functions (ILF) per channel and convolve with the spectra, a method to re-bins
to spectral resolution grids, integrates across each �nite element of the passband.
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Figure 4: Block diagram of Instrument Module. This includes thermal emission from telescope as well
as all of the EChO apparatus.

3. Calculate the power passing through each channel: This is the main func-
tionality of the module where the dichroic transmission acts to split the input signals
into channels, the emission from the dichroics are applied, the signal is convolved
with the ILF and re-binned according to the channel spectral resolution. The 2D
data arrays containing the Pchannel_tot_det and Pchannel_sig_det are stored in
the intdata object along with the relevant output wavelength grid.

4. Detector function: Temporary function acting as the detector module contained
in the instrument.class. Takes the output from the instrument module and converts
Pchannel_tot_det, Pchannel_sig_det (W) to Ichannel_tot, Ichannel_sig (electrons
/ second / pixel) and calculates the SNR.

3.3.2 Module Inputs

Name Type Description

params Parameters.class This parameter object is initialised by the main script
and contains simulation relevant parameters. The pa-
rameters contained in this object are read in from the
`echosim.par' �le.

intdata Internaldata.class This is a common object containing the output data
from all the modules. The input wavelength array grid
from astroscene is loaded from this object. Zodi values
are generated for each wavelength in the input grid.

3.3.3 Module Outputs

The output of this module is the updated internal object with all of the Q_tot data
now containing contributions from telescope and instrument emission.

3.3.4 Algorithm

1. Calls holding temperatures of the mirrors from the parameters �le and creates tem-
perature pro�les for the mirrors (assumes static temperature).
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2. Loads mirror re�ectivity, emissivity and solid angle data �les stored in the /data/telescope
�le path. Generates transmission pro�le and interpolates parameters to the as-
troscene wavelength grid. Interpolator is zero padded such that where the spectral
range is outside the wavelength range of the external �les, returns zero values.

3. Calculates the emitted power assuming a blackbody pro�le modi�ed by the emissivity
of the mirrors for MNUM of mirrors in the telescope optics for all observation times,
NTimeslices. Returns Ptel (W micron−1)

4. Loads Fzodi (W m−2 sr−1 micron−1) from the foregrounds module if it has been
selected and converts to power in the telescope beam by multiplying by the etendue.
If the Foreground module has been turned o� then this will return zero values.
Returns Pzodi (W micron−1)

5. Loads pre-calculated scattered light �ux, Fscat and interpolates with zero padding to
the astroscene wavelength grid. Where the spectral range is outside the wavelength
range of the external �les, returns zero values. Converts the �ux to power in the
telescope beam, Pscat by applying the etendue of the system.

6. Combines Fsig (W m−2 sr−1 micron−1), the output of the astroscene module with
the transmission, tau and e�ective gathering area, A_e� to derive Psig: the power
of the signal observed (W micron−1). Psig = Fsig * A_e� * tau

7. Combines Fsig with Ptel, Pzodi, Pscat, and tau to calculate the total power trans-
mitted through the telescope, Ptot (W micron−1) for all observation times calculated
in the astroscene module.
Ptot = ((Fsig + Pzodi) * tau + Pscat) * A_e�

8. Stores interpolated parameters, system etendue, Ptel, Pscat, Pzodi, Ptot and Psig,
data to intdata common object to be saved later.

9. Loads external dichroic transmission, emission data pro�les stored in the /data/instrument
�le path and interpolates with zero padding to astroscene wavelength grid. Where
the spectral range is outside the wavelength range of the external �les, returns zero
values.

10. Calls holding temperatures of the dichroics from the parameters �le and creates
temperature pro�les for the mirrors (assumes static temperature for all observation
times).

11. Creates 3D holding data cubes to store the spectra of each observation passing
through each channel. Loops over the number of instruments, InstNum and ap-
plies the relevant transmission pro�le. Adds the component of emission from the
dichroics assuming modi�ed blackbody function to the power passed through the
system:

� Pchannel_1 - Ptot * (1-tau1) + eta1 * B1 * A_e� * Solid_angle

� Pchannel_2 - (Ptot * tau1 + eta1 * B1 * A_e� * Solid_angle) * (1 - tau2) +
eta2 *B2 * A_e� * Solid_angle

� Pchannel_3 - [(Ptot * tau1 + eta1 * B1 * A_e� * Solid_angle) * tau2 + eta2
*B2 * A_e� * Solid_angle)] * (1 - tau3) + eta3 * B3 * A_e� * Solid_angle

� Pchannel_4 - [(Ptot * tau1 + eta1 * B1 * A_e� * Solid_angle) * tau2 + eta2
*B2 * A_e� * Solid_angle)] * tau3 + eta3 * B3 * A_e� * Solid_angle
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12. Generates an Instrument Line Function (ILF) per channel assuming a top hat func-
tion with width de�ned by the smallest lambda* R of the passband. Area of the top
hat is normalised to 1.0

13. Convolves the ILF with Pchannel_tot and Pchannel_sig using convolve() function.
Convolution acts to smooth the spectra.

14. Calculates a wavelength grid based on the spectral resolution of the channels start-
ing from the lower wavelength edge of the passband and interpolates the convolved
spectra to this new grid.

15. Integrates the convolved spectra over each �nite element of the spectral bins to
return Pchannel_tot_det, Pchannel_sig_det (W). Takes the centre of each �nite
bin as the �nal wavelength grid. Writes Pchannel_tot_det, Pchannel_sig_det and
the wavelength grid to the intdata object.

16. Loads external detector quantum e�ciency data from data/instruments/ �le path
and interpolates with zero padding the quantum e�ciency to the wavelength grid
produced during the integration of the �nite element. Loads pixel numbers illumi-
nated by the psf and the integration time.

17. Converts Pchannel_tot_det, Pchannel_sig_det (W) to Ichannel_tot_det, Ichan-
nel_sig_det (electrons/second/pixel) by multiplying by h * c / lambda and then
multiplying by the interpolated quantum e�ciency / number of illuminated pixels.

18. Calculated signal to noise ratio assuming photon noise. Where the signal to noise
ratio is given by:
Ichannel_sig_det * integration time / SQRT(Ichannel_tot_det * integration time).

19. Writes the data to the intdata object to be saved further on in the code.

3.3.5 Classes, Methods, Libs Used

telescope.class: The telescope class is responsible for simulating the behaviour of the
telescope and its main aim is to apply telescope-relevant e�ects to spectra produced by
the Astroscene and Foreground Modules and combine them.
The functionality of the class can be summarised in four categories:

1. Read telescope parameter �les: Most of the information describing the telescope
is contained in parameter �les located in the /data/telescope/ directory. This
information is often a function of wavelength and it has to be interpolated into the
simulations wavelength grid. The class provides methods for reading the required
data and interpolating it to the required wavelength grid.

2. Simulate telescope thermal environment: A factor that a�ects the telescope
contribution to the observed data is the temperature of the telescope at a given time.
The class provides a method(get_Temperature) that simulates the thermal environ-
ment. Currently the output temperature is a combination of constant with added
normal random noise (to be updated to Brownian noise). Plans for the temperature
time-line to incorporate temperature arising from the observation geometry (ra, dec,
solar aspect angle) are TBI.

3. Generate telescope emission: The method(calc_Ptel)take the calculated ther-
mal environment and calculates the emitted and transmitted telescope power assum-
ing a modi�ed blackbody.
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4. Apply telescope e�ects to input spectra from Astroscene: This is the main
functionality of the class where telescope e�ects are applied to the simulated spectra
created by the Astroscene and Foreground modules. This function is performed by
the calc_Ptot_Psig method of this class.

telescope.class methods:

� __init__(params.class, intdata.class): Initialisation of the Telescope object
requires as input a parameters object, containing the simulation parameters and the
common data object, containing the wavelength grid used by the Astroscene module
to produce the simulated spectra and the resultant spectra. Upon initialisation,
all telescope parameters are read in from the relevant �les and interpolated to the
wavelength grid provided as input.

� get_Temperature(intdata.class): This method takes mirror temperature param-
eters from the .par �le and generates a temperature output array for the observation
duration incorporating normal random noise (Brownian noise TBI) and tempera-
ture as a function of the geometry of the observation (ra, dec, solar aspect angle)
(TBI). The output of this method is a 2D �oat array of temperature vs.time for each
telescope mirror.

� get_Emissivity(string File): This method loads the telescope emissivity param-
eters from a �le and interpolates to the wavelength grid of the astroscene. The output
is a 2D �oat array containing emissivity vs. wavelength for each telescope mirror.

� get_Reflectivity(string File): This method loads mirror re�ectivity parame-
ters from a �le and interpolates to the wavelength grid of the astroscene.

The output is a two element list containing:

1. a 2D �oat array storing re�ectivity vs wavelength for each telescope mirror.

2. a 1d �oat array which is the product of all the mirror components re�ectivities.

� get_Solid_Angle(string File): Reads telescope solid angle from a �le using solid
angle pathname stored in the params �le and interpolates to the wavelength grid
used by the astroscene. The output is a 1D �oat array containing the solid angle
subtended by the beam vs. wavelength in units of steradians.

� get_Scattered_Light (string File): This method reads in a �le containing tele-
scope scattered light as a function of time and wavelength, and to interpolate to
time/wavelength grids. The ouput of the method is a 2D array containing the tele-
scope scattered light as a function of wavelength and time.

� calc_Ptel(params.class, intdata.class, 2d emissivity, 2d reflectivity):
This method takes as input the mirror temperature pro�les generated by the calc_Temperature
method, the interpolated emissivity and re�ectivity tables and models the telescope
mirrors as modi�ed black bodies.

The output of this method is a 1D array containing the telescope emissivity. The
telescope emissivity is calculated as:

((A1 E1 BB(T1) R1 + A2 E2 BB(T2))R3 + A3 E3 BB(T3))R4 + A4 E4 BB(T4)

where Ai, Ei, Ri and Ti are the emitting area, emissivity, re�ectivity and tempera-
tures of mirror i.

� calc_FZodi(intdata.class): This method takes as input zodi light produced by
the Foreground Module and interpolates to the wavelength grid produced by the as-
troscene. The output of the method is a 1d array containing the interpolated emission
of zodiacal light with respect to wavelength and is taken to be time independent.
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� calc_Ptot_Psig : This method is the main function of the class and takes the Fsig
output from the astroscene, the interpolated data from Fzodi, re�ectivity, emissivity,
solid angle, telescop scattered light and telescope emission to produce Ptot and Psig.
All data is written to the intdata object to be called by users when required. The
output from this method is a two element list containing:

1. a 2D �oat array containing the product of all the inputs at the telescope aperture
given by:

Ptot = ((Fzodi + Fsig)τ + Ptel + Pscat)Ω Aeff

2. a 2D �oat array containing the power of the signal that is collected by the
telescope and passed through its optics and is calculate as:

Psig = Fsig τΩ Aeff

instrument.class: The Instrument object takes input from the params �le to per-
form various tasks required by the instrument module such as interpolating the dichroic
transmissions/emissions pro�les, generating the Instrument Line Function, interpolating
to a spectral resolution grid and integrating across each bin.
instrument.class methods:

� __init__(params.class, intdata.class): Initialisation of the Instrument object
requires as input a parameters object, containing the simulation parameters and the
common data object, containing the wavelength grid used by the Astroscene module
to produce the simulated spectra and the resultant spectra. Upon initialisation, all
instrument parameters are read in from the relevant �les and interpolated to the
wavelength grid provided as input.

� Load_Dichroic_transmission(): Reads dichroic transmission �le and interpolates
to astroscene wavelength grid.

� Load_Dichroic_emission(): Reads dichroic emission �le and interpolates to as-
troscene wavelength grid.

� get_Dichroic_Temperature(): Returns the temperature of the diachroics as a func-
tion of time and wavelength.

� Calc_Emission_Di: Takes optics temperature derived in get_Dichroic_Temperature()
and generates blackbody emission at astroscene wavelengths for the dichroic channel.

� Generate_ILF: Takes passband data from params and models the Instrument Line
Function (ILF) as tophat of width equal to the �nest spectral resoltion of the pass-
band, with area normalised to 1.

� Get_Pchannel_Components(2d Ptot, 2d Psig):Takes the emission and transmis-
sion pro�les of the dichroics and passes Ptot and Psig through the system, e�ectively
splitting the received power into channels. Returns 2 3D data cubes containing the
transmitted power through the optics.

� Convolve(2d Input, 2d ILF): Convolves Pchannel_tot, Pchannel_sig with the In-
strument Line Function (ILF).

� Generate_R_bins( 1d channel): Generates new bins for the spectra from the spec-
tral resolution and the maximum/minimum wavelengths of the passbands.

� Downsample( 2d P_det_tot, 2d P_det_sig, 1d wave, 1d channel): Interpolates
total and signal spectra to the spectral resolution of the passband and integrates
across the element.
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� Detector(2d P_det_tot, 2d P_det_sig, 1d wave, 1d channel): Method acts
as a temporary detector module. Converts the input power into photons per second
falling on the detector. Multiplies by the instrument quantum e�ciency to covert to
electrons / second.

3.3.6 Functional requirements

Req. ID Description

TELESCP-FUNC-010 The class will require a parameter as input
TELESCP-FUNC-020 The class will require a internaldata as input
TELESCP-FUNC-030 The class will read the emissivity of all telescope mirrors from a

parameter �le. The emissivity for each mirror will be interpolated
to the waveleght grid provided by the Astroscene module

TELESCP-FUNC-040 The class will read the re�ectivity of all telescope mirrors from
a parameter �le. The re�ectivity for each mirror will be interpo-
lated to the waveleght grid provided by the Astroscene module

TELESCP-FUNC-050 The class will read the transmission of all telescope mirrors from
a parameter �le. The transmission for each mirror will be inter-
polated to the waveleght grid provided by the Astroscene module

TELESCP-FUNC-060 The class will require the emitting area of all telescope mirrors
as parameter input. The emitting area will be provided by the
input parameter object.

TELESCP-FUNC-070 The class will require the e�ective aperture of the telescope as
parameter input. The e�ective aperture will be provided by the
input parameter object.

TELESCP-FUNC-080 The class will read the telescope solid angle from a parameter �le.
The telescope solid angle will be interpolated to the wavelength
grid provided by the Astroscene module

TELESCP-FUNC-090 The class will simulate the telescope thermal environment for all
4 telescope mirrors as a function of time.

TELESCP-FUNC-091 It will be possible to simulate the thermal environment as con-
stant temperature for the entire time-line. The temperatures to
be used will be provided by the input parameter object.

TELESCP-FUNC-092 It will be possible to simulate the thermal environment as brow-
nian noise. The temperatures to be used will be provided by the
input parameter object.

TELESCP-FUNC-093 It will be possible to simulate the thermal environment as a func-
tion of the observation geometry (ra, dec, solar aspect angle).

TELESCP-FUNC-100 The class will read the telescope scattered light from a parameter
�le. The telescope scattered light will be interpolated to the
wavelength grid provided by the Astroscene module

TELESCP-FUNC-110 The class will apply and output the e�ect of telescope optics on
the signal produced by the Astroscene Module

TELESCP-FUNC-111 The class will combine and output the e�ect of telescope optics,
telescope emission, telescope scattered light, foreground light on
the signal produced by the Astroscene Module

TELESCP-FUNC-112 The spectra produced by the class will be placed in the
internaldata object.
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Req. ID Description

INSTRUMENT-FUN-010 The Instrument class will require a parameter as input
INSTRUMENT-FUN-020 The Instrument class will require intdata object as input
INSTRUMENT-FUN-030 The Instrument will load dichroic transmission from an exter-

nal �le and interpolate to astroscene wavelength grid.
INSTRUMENT-FUN-040 The instrument will load dichroic emission from an external

�le and interpolate to astroscene wavelength grid.
INSTRUMENT-FUN-050 The instrument will load dichroic temperatures and generate

temperature pro�les.
INSTRUMENT-FUN-051 The instrument will incorporate Brownian noise temperature

�uctuations in the dichroics.
INSTRUMENT-FUN-060 The instrument will calculate the emission pro�les of the

dichroics for all observation times based on a blackbody.
INSTRUMENT-FUN-070 The instrument will calculate an Instrument Line Function

(ILF) that has a top-hat form, with width de�ned by the �nest
spectral resolution of the passband and area normalised to 1.0.

INSTRUMENT-FUN-080 The instrument will split the input of the astroscene into
channels by combining with the transmission pro�les of the
dichroics and will include the emission from the dichroics them-
selves.

INSTRUMENT-FUN-090 The instrument will convolve the ILF with the channel spectral
pro�les.

INSTRUMENT-FUN-100 The instrument will generate spectral resolution wavelength
grids.

INSTRUMENT-FUN-110 The instruments will down sample the convolved spectral pro-
�les to that of the spectral resolution wavelength grids.

INSTRUMENT-FUN-120 The instrument will integrate across each �nite element of the
spectral resolution wavelength grid.

INSTRUMENT-FUN-130 The instrument will divide the down sampled spectra by
h*c/lambda to convert from W to photons per second.

INSTRUMENT-FUN-140 The instrument will load the quantum e�ciency of the detec-
tors from an external �le and interpolate to the down sampled
wavelength grid.

INSTRUMENT-FUN-150 The instrument will multiply the resulting spectra by the inter-
polated quantum e�ciency and divide by the number of pixels
illuminated to return the current in the pixels. Units: electrons
/second/pixel

INSTRUMENT-FUN-160 The instrument creates the signal to noise ratio of the obser-
vation from: SNR = I_sig* t / SQRT (I_tot * t) where t is
the integration time of each observation.

3.3.7 Open Issues

1. Currently the Telescope.class simulates the telescope thermal environment a time-
constant temperatures. Eventually, it will be possible to simulate the temperature as
brownian noise. Also not implemented is simulation of temperature as a function of
observation geometry. The latter will take some thinking on what is the best way to
input the necessary information and how to calculate the temperature as a function
of this input.

2. Currently the telescope scattered light is assumed to be zero.
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3. During convolution of the ILF with Pchannel_tot, Pchannel_sig boundary e�ects
are seen.

4. Current modelling method of the instrument is comparable to radiometric models.
In the future a more detailed instrument modelling function will be implemented.
See URD (section 3.4) for development goals of the instrument.

5. Basic detector methods are contained within the Instrument.class. A separate detec-
tor module will be created as the more complex instrument modelling is initialised.

3.4 Noise Module

3.4.1 Module Aim

The Noise Module is responsible for simulating di�erent types of noise and adding them
to the the simulated timelines3.4.7)

3.4.2 Inputs

Name Type Description

params Parameters.class This parameter object is initialised by the main script
and contains simulation relevant parameters. The pa-
rameters contained in this object are read in from the
`echosim.par' �le.

intdata Internaldata.class This is a common object containing the output data
from all the modules. The input wavelength array grid
from astroscene is loaded from this object. Zodi values
are generated for each wavelength in the input grid.

3.4.3 Outputs

The output of this module is the updated internal object with all of the Q_tot data now
containing contributions from noise due to telescope jitter, thermal variations, detector
relative gains and other.

3.4.4 Algorithm

� pointing jitter: The pointing jitter can be calculated by one of the following ways

1. From actual space telescope pointing data:

In this case a �le containing an ra,dec pointing timeline is loaded. The average
of ra*cos(dec) and dec are removed from the ra and dec timelines respectively.
The mean of the absolute FFT of both ra and dec timelines is returned as the
power spectrum of instrument's pointing. The returned pointing power spectrum
is multiplied by a gaussian random and along with and along with a normal
random distribution as the complex phase, it is inverse Fourier transformed to
generate a pointing timeline.

2. From a set of nodes describing pointing power spectrum:

In this case a set of nodes corresponding to [frequency, complex power] are pro-
vided from the parameters �le. This nodes are used to construct the pointing
power spectrum, by joining the nodes with an exponential function. The result-
ing pointing power spectrum, along with a normal random phase distribution
is inverse Fourier transformed to create a pointing timeline, based on the input
model.
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Figure 5: Block diagram of the Noise module, describing the di�erent types of noise added to the simulated
time-lines.

� Brownian noise: Brownian noise calculated using the Wiener process of the cumu-
lative sum of white noise over the time domain.

1/
√

(2πσ2t) ∗ exp(−(x−mean ∗ t)2/2σ2t)

� Photon noise:It is assumed that the photon �ux is high enough that a gaussian
approximation is suitable.

� Detector readout noise: Readout noise is simulated as a gaussian random distri-
bution.

3.4.5 Classes, Methods, Libs Used

noise.class: The noise class is responsible for holding pointing data (either real data,
loaded from a �le or simulated). In addition the class provides methods to apply noise to
the simulated timelines, provided by the Instrument module.
noise.class methods:

� loadDetectorRelativeGains():Method that loads a �ts �le containing relative gains
for all the pixels in each detector.

� loadHerscelPointingModel(): Method that reads Herschel telescope pointing model
from a �ts �le. The �ts �le is expected to have data for frequency and power spec-
trum. The method returns the power spectrum and the corresponding frequency
array.

� loadHerscelPointingData(): Method that reads Herschel telescope pointing data
from a �ts �le. The �ts �le is expected to have data for RA, Dec, and time. The
method returns the average power spectrum of ra and dec, and the corresponding
frequency array

� getRandomHerschel(outputArrayLength, inJitterSeed): Method to return an
array of random numbers based on the power spectrum of Herschel telescope pointing
data.
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� makePointingJitterModel(inputNodes, maxFrequency, numSamples): Method to
return two arrays [frequency, Complex Power], created from a list of (phase,power)
points. The returned arrays (as per requirement) have length which is a power of 2.

� getPointingJitterTimeline(inArrayLength, inDeltaS, inPointingJitterNyqFreq,
inModelNodes, inJitterSeed ): Method to create a simulated pointing jitter (delta
theta) time-line, given a model describing the jitter. The model is provided as a list
of (freq(Hz),Power) points, contained in inModelNodes. These are provided to the
makePointingJitterModel() method in order to create a complex frequency and a
complex power array. The method then returns:1. The jitter sampled at 1Hz to be
used as Housekeeping. 2. The jitter summed every samplingTime (inDeltaS) to be
used by Pointing_Jitter(). 3. The (jitter)2 summed every samplingTime (inDeltaS)
to be used by Pointing_Jitter()

� Brownian(): Brownian noise calculated using the Wiener process of the cumulative
sum of white noise over the time domain.

� counter(): Takes the seed start point and the number of detectors and generates a
seed counter which is utilises using the next() function in each noise function.

� ShotNoise(): Takes the detector timeline which has already been integrated by the
detector time and passes the corresponding photon noise. It is assumed that the
photon �ux is high enough that a gaussian approximation is suitable.

� Pointing_Jitter(F_eff, PSFy, PSFgrad,PSFgrad2, x, y, WidPix, Timeline,
JitterSeed): Takes the detector timeline which has already been integrated by the
detector time and passes the corresponding pointing jitter. It is given that the spec-
trometer has large stability in the wavelength axis and as such the jitter is modelled
as �uctuations around the y axis only.

� Dark_Current(): Takes the dark current from the par �le for the relevant channel
and generates a constant dark current value given an exponential function of detector
temperature.

� Detector_Gain(timegrid, Lambda, Seed): Takes the mean expected gain from
the par �le for the relevant channel and generates a random Brownian noise gain.

� Detector_Readout(Timeline, sigma_RE, Seed): Takes the mean expected gain
from the par �le for the relevant channel and generates a random Detector readout
noise.
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3.4.6 Functional requirements

Req. ID Description

NOISE-FUN-010 The Noise module will require a parameter as input
NOISE-FUN-020 The Noise module will require intdata object as input
NOISE-FUN-030 The Noise module will be able to calculate pointing jitter timelines
NOISE-FUN-031 The pointing jitter timelines may be calculated from the properties

of pre-existing timelines of earlier space telescopes.
NOISE-FUN-032 The pointing jitter timelines may calculated on the �y from jitter

noise parameters provided in the parameter �le.
NOISE-FUN-033 The Noise module will provide pointing jitter timelines sampled at

a the simulated observation's sampling rate, as well as, at a higher
sampling rate to simulate Housekeeping data.

NOISE-FUN-040 The Noise module will be able to apply relative gains to the timeline
of pixel of each detector.

NOISE-FUN-050 The Noise module will be able to apply photon noise to the timeline
of pixel of each detector.

NOISE-FUN-060 The Noise module will be able to apply relative gains to the timeline
of pixel of each detector.

NOISE-FUN-070 The Noise module will be able to apply read-out noise to the timeline
of pixel of each detector.

NOISE-FUN-080 The Noise module will be able to apply dark current noise to the
timeline of pixel of each detector.

3.4.7 Open Issues

None currently.
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