Plasma interactions at Titan and icy moons: evolving ionospheres

A.J.Coates^{1,2}, A.Wellbrock^{1,2}, G.H.Jones^{1,2}, F.J.Crary³, D.T.Young³, M.F.Thomsen⁴, D.B.Reisenfeld⁵, R.E. Johnson⁶, T.W. Hill⁷ & the CAPS team

- 1. Mullard Space Science Laboratory, UCL, UK
- 2. Center for Planetary Sciences at UCL/Birkbeck, UK
- 3. Southwest Research Institute, Texas, USA
- 4. LANL, USA
- 5. University of Montana, USA
- 6. University of Virginia, USA
- 7. Rice University, USA

Outline:

- Titan, Enceladus, Rhea, Dione
- Ionospheric escape at solar system objects
- Ganymede, Europa, Callisto
- Conclusions

i

NASA/JPL/Space Science Institute

Titan flyby, 16 April 2005

Waite et al., Science 2005

From INMS

Titan negative ions

- Unexpected!
- Ram direction
- Near closest approach

Originally seen on TA in 2004...

Cassini ELS Data starting 26-oct-2004 Actuator range: FULL

Confirmed in later low altitude encounters

Cassini ELS Data starting 23-sep-2006 Actuator range: FULL

Cassini ELS Data starting 09-oct-2006 Actuator range: FULL

Coates et al., GRL 2007

3

Titan's atmosphere: a hydrocarbon chemical factory producing haze in Titan's atmosphere and tholins for the surface

Unexpected heavy negative ions: Coates et al, 2007, 2009, 2010 Escape - Coates et al 2012

Formation of low mass negative ions

Production processes:
Several considered and rates estimated
Mainly dissociative electron attachment

Loss processes: •Several considered and rates estimated •Mainly associative detachment •Some photodetachment

First chemical model including negative ions (low mass), c.f. ELS data at 1015 km (T40) (Vuitton et al., PSS 2009)

High mass population: chains, rings, higher? PAHs (Waite et al., 2007, Coates et al., 2007)? Fullerenes (Sittler et al., PS 2009) at high masses?

Evolution of Titan ionosphere composition with altitude

Enceladus plume

≜UCL

Number density evolving with distance in plume: Indicates charging by ambient plasma particles (Hill et al., 2012)

Additional charged particle population: a 'dusty plasma'? (Morooka et al., 2011)

Enceladus' auroral spot

Pryor, Rymer et al., Nature 21 April 2011

Rhea's O₂ and CO₂ atmosphere – from INMS and CAPS

Teolis, B.D., G.H. Jones, P.F. Miles, R. L. Tokar, B. A. Magee, J. H. Waite, E. Roussos, D.T. Young, F. J. Crary, A. J. Coates, R. E. Johnson, W.-L. Tseng, R. A. Baragiola

Science Express – 25 Nov 2010

In-situ neutral atmosphere measurements (INMS) Negative and positive ions picked up from atmosphere pinpoint near-surface source (CAPS)

Dione's oxygen exosphere

Tokar et al., Geophys Res Lett., Feb 2012

Icy Dione is within Saturn's trapped radiation belts – oxygen forms and is recycled via the surface

Process occurs at Dione, Rhea and Saturn's main rings, also at Ganymede, Europa and Callisto in Jupiter's - targets for ESA's proposed JUICE (JUpiter ICy moons Explorer) mission for launch in 2022

lonospheric plasma near unmagnetized objects

Cassini in Titan's tail: CAPS observations of plasma escape

A.J. Coates, A. Wellbrock, G.R. Lewis, C.S. Arridge, F.J. Crary, D.T. Young, M.F. Thomsen, D.B. Reisenfeld, E.C. Sittler Jr, R.E. Johnson K. Szego, Z. Bebesi, G.H. Jones, JGR Space Physics, 2012

- Only 3 distant tail encounters so far
- T9, T75 ~10,000 km tailward from Titan, T63 ~5,000 km
- Escaping ionospheric plasma seen well away from Titan – key is 'fingerprint' from ionospheric photoelectrons
- Split tail seen all 3 common feature
- Escaping ionospheric ions mass-separated to give escape rate, combine with electron density gives flux
- 2.5x10²⁴ ions s⁻¹ (average)
- 4.8x10²⁵ amu s⁻¹ (average)
- ...or 7 metric tonnes per day lost from atmosphere – significant on solar system timescale – but ~1/4000 Enceladus rate

7.6

14.14.09

6.3 0.2

14.14.47

5.3 0.2

14.15.24

4.9

14.16.00

5.2

14.16:36

6.2 0.2

14.17.10

7.5

14.17.45

m/q = 2m/q = 16m/q = 28

Alt (R:)

06:00:00 9.0 0.2

14.18.19

Comets – gas production rates

Object	Spacecraft	Production rate (s ⁻¹)	Ratio (Halley=100)	Reference
Giacobini- Zinner	ICE	4x10 ²⁸	5.8	Mendis et al, 96
Halley	Giotto, Vega, Suisei, Sakigake	6.9x10 ²⁹	100	Krankowsky et al, 86
Grigg- Skjellerup	Giotto (GEM)	7.5x10 ²⁷	1.1	Johnstone et al, 93
Borrelly	DS1	3.5x10 ²⁸	5.1	Young et al, 2004
Churyumov- Gerasimenko	Rosetta	3x10 ²⁴ -5x10 ²⁷	4.3x10 ⁻⁴ -0.7	Hansen et al., 07, Motschmann & Kuehrt, 06

From Coates, AIP proceedings, 2010

Planets – gas production rates

Object	Spacecraft	Q (S ⁻¹)	Q (Halley=100)	Reference
Mercury	Ground based	10 ²⁴ -10 ²⁵	1.5x10 ⁻⁴ - 1.5x10 ⁻³	Potter et al., 02
Venus	VEx, PVO	10 ²⁴ -10 ²⁵	1.5x10 ⁻⁴ - 1.5x10 ⁻³	Brace et al., 87 Barabash et al., 07a
Mars	MEx, Phobos	10 ²³ -10 ²⁵	1.5x10 ⁻⁵ - 1.5x10 ⁻³	Barabash et al., 07b Lundin et al., 08, 89

Adapted from Coates, Ion Pickup and Acceleration: Measurements From Planetary Missions, AIP proc. 'Physics of the heliosphere: a 10-year retrospective', 10th Annual Astrophysics Conference, 2012

Moons – gas production rates

Object	Spacecraft	Q (S ⁻¹)	Q (Halley=100)	Reference
lo	Galileo	3x10 ²⁸	4.3	Bagenal, 94
Europa	Galileo	2x10 ²⁷	0.29	Smyth & Marconi, 06
Ganymede	Galileo	1.3x10 ²⁷	0.19	Marconi, 07
Titan	Cassini	4x10 ²⁴ -10 ²⁵	1-1.5x10 ⁻³	Coates et al., 12, Wahlund et al., 05
Enceladus	Cassini	3x10 ²⁷ - 1-2x10 ²⁸	0.43- 2.9	Tokar et al., 06 Smith et al.
Enceladus L-shell	Cassini	3.8-7.6x10 ²⁶	0.06-0.12	Cowee et al., 09
Rhea	Cassini	2.45x10 ²⁴	3.6x10 ⁻⁴	Teolis et al., 10
Dione	Cassini	9.6x10 ²⁵	0.01	Tokar et al., 12

Adapted from Coates, Ion Pickup and Acceleration: Measurements From Planetary Missions, AIP proc. 'Physics of the heliosphere: a 10-year retrospective', 10th Annual Astrophysics Conference, 2012

DC

Conclusions

- Titan atmosphere evolution with altitude, and plasma escape causing evolution with time
- Enceladus evolution with distance, plasma escape
- Rhea and Dione weak atmospheres (cf. Saturn rings, Europa, Ganymede, Callisto...)
- Planets, comets, moons group in production rate v size
- Anticipate JUICE in-situ characterisation of Galilean satellites in 2030s