

Flow From the Solar Nebula s Hill Sphere

at 5 AU in the minimum-mass Solar nebula

Ionization—Recombination Reaction Network

Involves 12 species: H_2 , HCO^+ , Mg, Mg^+ , e^- , 0.1- μm grains charged up to +/-2, and grain-adsorbed H_2 and Mg

Also separately solve Saha eqn. for collisional ionization of potassium.

X-Ray Ionization

$$H_2 \rightarrow HCO^+ + e^-$$

Dissociative Recomb.

$$HCO^+ + e^- \rightarrow H_2$$

Charge Exchange

$$HCO^+ + Mg \rightarrow H_2 + Mg^+$$

Radiative Recomb.

$$Mg^+ + e^- \rightarrow Mg + h\nu$$

Grain Surface Recomb.

$$Mg^+ + e^- + G \rightarrow Mg + G$$

MRI turbulence requires

The instability grows if the magnetic fields cannot diffuse across its wavelength (v_{Az}/Ω) within its growth time $({}^{\sim}\Omega^{-1})$.

To find v_{Az} we assume B_z is indept. of height, with pressure $10^{-3}x$ midplane gas pressure, based on Solar nebula MHD calculations.

Fig. 14.—Saturation level of the magnetic energy as a function of the magnetic Reynolds number Re_{M0} for zero net flux B_z models ($\beta_0 = 3200$). Open circles denote the models with only the ohmic dissipation ($X_0 = 0$), and the other symbols are including also the Hall effect ($X_0 = 2, 4, 100, \text{ and } 1000$).

With Stellar X-rays

Without Stellar X-rays

Grain Settling Times jovian-moon-formn/run39/settle/settle.mm.sm 1 Myr N Height **MM96** MM03SEMMRadius R / R_J

Grain Settling Times jovian-moon-formn/run39/settle/settle.gs.sm Height K0 K-2 K-4Radius R / R_J

Summary

Do circumjovian disk models have conductivities consistent with the assumed accretion stresses?

Broadly, YES, for both minimum-mass and gas-starved models: magnetic stresses are weak in the MM models, as needed to keep the material in place. Stresses are stronger in the gas-starved models, as assumed in deriving the flow to the planet.

However,

- •Future minimum-mass modeling may need to consider the loss of dust-depleted gas from the surface layers to the planet.
- •The gas-starved models should have stress varying in radius.
- •Dust evolution is a key process for further study, since the recombination occurs on the grains.