

Status of ESA's SMART-1 Mission to the Moon

Bernard H. Foing*,

*Chief Scientist, ESTEC/SCI-SR, ESA Science Directorate, <u>Bernard.Foing@esa.int</u>

G.Racca, A. Marini and SMART-1 Project team

- M. Grande, J. Huovelin, J.L. Josset, H. Keller, A. Nathues, D. Koschny, M. Almeida, J. Zender and SMART-1 Science & Technology team
- SMART-1 Technology Mission: Solar Electric Propulsion to the Moon
- Payload Technology and Science objectives
- Lunar and planetary science with SMART-1
- Performances, Status and first results data integration
- SMART-1 Contribution to preparing Future Planetary exploration

SMART-1 Mission

SMART-1 web page (http://sci.esa.int/smart-1/)

- ESA SMART Programme: Small Missions for Advanced Research in Technology
 - Spacecraft & payload technology demonstration for future cornerstone missions
 - Management: faster, smarter, better (& harder)
 - Early opportunity for science

SMART-1 Mission

SMART-1 web page (http://sci.esa.int/smart-1/)

- ESA SMART Programme: Small Missions for Advanced Research in Technology
 - Spacecraft & payload technology demonstration for future cornerstone missions
 - Management: faster, smarter, better
 - Early opportunity for science

SMART-1 Solar Electric Propulsion to the Moon

- Test for Bepi Colombo/Solar Orbiter
- Mission approved and payload selected 99
- SMART-1 cost 110 MEuro
- 19 kg payload (delivered August 02)
- 370 kg spacecraft
- launched Ariane 5 on 27 Sept 03, Kourou

Primary Solar Electric Propulsion

The ion engine:

- SNECMA -SEP (F) (Stationary Plasma Thruster SPT-100, PPS-1350)
- High specific impulse (~1500 s)
- Iow thrust (~70 mN = 7 grams) and Iow power consumption (~20 W/mN)

The Launch

V162 lift-off on 27 September
2003 at 23:14:39 UTC – The
launch was perfect

• SMART-1 separated at 23:56:03 into a GTO (656 x 35,881 km): perfect injection

- 100 s later telemetry was received by Perth GS
- •Automatic activation sequence worked flawlessly

Solar Electric Propulsion to the Moon

 Launched 27 Sept 2003 as Auxiliary passenger on Ariane 5 into Geostationary Transfer Orbit with INSAT3 E and e-Bird

(a bargain hitchhike to space)

 Spiral out cruise (15-18 month), SPT/coast arcs, lunar resonance swingbys & capture

Solar Electric Propulsion to the Moon

- Launched 27 Sept 2003 as Auxiliary passenger on Ariane 5 into Geostationary Transfer Orbit (a bargain hitchhike to space)
- Spiral out cruise (15-18 month), SPT/coast arcs, lunar resonance swingbys & capture, and spiral in
- lunar science orbit

(300-1000 km perilune - 10000 km apolune, 6 month + extension)

United States (US)

General Dynamics: Hydrazine Propulsion System Ithaco Space Systems Inc: Reaction wheels L3 Communications: Electrical Ground Support Equipment TECSTAR: Solar Cells

Finland (FIN)

Finish Meteorological Institute: Space plasma electron and dust detection (SPEDE)

Sweden (S)

Swedish Space Corporation: Prime Contractor Omnisys Instruments AB: Power Control and Distribution Unit SAAB Ericeson Space AB: Flight Module Assembly Integration and Testing, Antennae, Remote Terminal Unit, Bectromognetic Compatibility, Thermal Subsystem

Denmark (DK)

Terme A/S: On-board Indepedent Software Validation DTU Technical University of Denmark: Star tracker

Germany (D)

Astrium GmbH: Deep space X/Ka-band (KaTE) MPI Aeronomies: Near Infrared Spectrometer (SIR)

Switzerland (CH)

APCO Technologies SA: Structure and Mechanical Ground Support Equipment Contraves Space AG: Electric propulsion mechanism CSEM: Asteroid-moon micro imager (AMIE)

Italy (I)

LABEN SpA: Electric Propulsion Diagnostic (EPDP) RSIS: Radio science investigation (RSIS)

United Kingdom (UK)

Rutherford Appleton Laboratory: Compact imaging X-ray spectrometer (D-CDS)

The Natharlands (NL)

Folder Space: Solar Arrays TNO/TPD: Son acquisition sensors

Belgium (8)

Spacebel S.A: On-board software detailed design Alcatel ETCA SA: Electric propulsion power processing

France (F)

SAFT Division Defence et Espace: Batteries Snecmu Moteurs: Solar Array Mechanism, Electric Propulsion System (EPS) ATERMES: Electric propulsion pressure regulation Arianespace: Launcher (Ariane 5)

Spain (E)

Alcatel Espacio: S-band transponder CRISA: Battery management electronics

EN ROUTE TO THE MOON SMART-1 - INCREASING ELLIPSES

From the first moment of ignition, the Hall effect propulsion has been used quasi-continuously to raise the altitude of the perigee (and the apogee) as quickly as possible.

Overview of SMART-1 instruments status and first results

Bernard H. Foing*,

*Chief Scientist, ESTEC/SCI-SR, ESA Science Directorate, <u>Bernard.Foing@esa.int</u>

G.Racca, A. Marini, E. Evrard and SMART-1 Project team

- M. Grande, J. Huovelin, J.L. Josset, H. Keller, A. Nathues, D. Koschny, M. Almeida, J. Zender and SMART-1 Science & Technology team
- SMART-1 Technology Mission: Solar Electric Propulsion to the Moon
- Payload Technology and Science objectives
- Lunar and planetary science with SMART-1
- Performances, Status and first results data integration
- SMART-1 Contribution to preparing Future Planetary exploration

Instrument Technology

- D-CIXS (Compact Imaging X-ray Spectrometer)
 - Swept charge CCD, advanced micro structure collimator
- SIR (IR Spectrometer)
 - Monolithic quartz commercial grating spectrometer
- AMIE (High Resolution micro- Camera)
 - micro-camera, 3D electronics and integrated Data Processor
 - Multicolour imaging, lightweight high resolution optics
 - Laser link with ESA Optical Ground Station in Tenerife
 - On Board Autonomous Navigation experiment
- SPEDE Spacecraft Potential Electron Dust Experiment
- EPDP Electric Propulsion Diagnostics Package
- KATE Deep Space X- Ka Communications &
- RSIS radio science
- Star tracker

7 experiments and 10 investigations

		Mass	Power	PI Investigator
		(kg)	(W)	
EPDP	Electric Propulsion Diagnostic Package	2.4	18	G. Noci (I)
•SPEDE	Spacecraft Potential Electron and Dust Exp.	0.8	1.8	A. Malkki (SF)
•KATE	Ka-Band TT&C Experiment	6.2	2	R. Birkl (D)
•RSIS	Radio-Science Investigations for SMART-1	(KATE/A	MIE)	L. less (I)
•D-CIXS	Demo Compact Imaging X-ray Spectrometer	5.2	18	M. Grande (UK)
•XSM	X-ray Solar Monitoring	(with D-C	CIXS)	J. Huovelin (SF)
•SIR	SMART-1 Infrared Spectrometer	2.3	4	H.U. Keller (D)
•AMIE	Advanced Moon micro-Imager Experiment	2.1	9	J.L. Josset (CH)
Laser	Experimental Deep-space Laser link	(using A	MIE)	Z. Sodnik (ESA)
OBAN	On-Board Autonomous Navigation Exp.	(using A	MIE)	F. Ankersen (ESA)

SMART-1 Startracker commissioning image (J. Joergensen, DTU, DK)

SMART-1 KATE Deep Space X Ka comm.

X band experiment

 First European Ka experiment

AMIE camera: multicolour eyes

PI:J.L.Josset (CSEM - CH); Co-I's from I,F,CH, Fin, NL, ESTEC

Science and Technology Objectives

- Miniature camera for Cruise and Lunar phase
- Lunar science high-res. multi-spectral imaging (40 m Moon Southern hemisphere)
- Extension of data-set Apollo/Clementine
- Support laser-link, OBAN, RSIS; aligned to SIR.
- Online data and projects for Public Outreach

• 1st Moon quarter Image from AMIE

AMIE multicolour microcamera

PI:J.L.Josset (Space-X - CH); Co-I's from I,F,CH, Fin, NL, ESTEC

Main Experiment features:

- CCD electronics & Micro-DPU in high-density packaged 3-D interconnect technology.
- Shielded Off The Shelves components.
- 5.3° FOV, 16.5/154 mm d/f optics
- 1024 x 1024 Si-CCD
- 3 fixed wide-band filters coating (0.75÷0.96 μ m) + panchromatic + laser-link filter (847)
- Mass 2.1 kg (Opt.Head 400 gr), Power 9W

AMIE camera science

- Multicolour:
 - White light +3 filters 750, 900 and 950 nm
- High Resolution Geology
 - 40 m/pixel near perilune, 80 m average
 - Geological context for SIR & D-CIXS data
 - Multi-colour complement
 - Stereo/ multi-phase angle observations
 - Survey landing sites for sample return

AMIE camera science

- Multicolour:
 - White light +3 filters 750, 900 and 950 nm
- High Resolution Geology
 - 40 m/pixel near perilune, 80 m average
 - Geological context for SIR & D-CIXS data
 - Multi-colour complement
 - Stereo/ multi-phase angle observations
 - Survey landing sites for sample return
- Repeated deep imaging of south pole
 - Mapping 'eternal light' and 'shadow'
 - Search for potential 'water ice traps'
 - Potential for lunar bases, power, resources
 - Preparation for future lunar exploration

SIR IR spectrometer science

- 0.93 to 2.4µm, 256 channels, Lunar Spectral mapping
 - Discrimination of minerals: pyroxenes and olivine
 - Olivine from mantle : crustal differentiation/evolution
 - Basins exposed materials from mantle (e.g. South-Pole Aitken)
 - Deep spectra in permanent shadows (ice spectral features)
- SIR highest spatial resolution 300 m
 - Resolve units on central peaks, walls, rims and ejecta blankets of large impact craters >>> stratigraphy of lunar crust

SIR commissioning

- 1st SMART-1 SIR infrared spectrometer Moon scan
- 6 Feb 04

D-CIXS spectrometer

PI: M.Grande (RAL- UK), co-l's UK, Fin, F, E, S

Science and Technology Objectives

- Demonstrate compact X-ray imaging spectrometer
- Technologies: Swept Charge Devices (Detectors)
- Photo-lithographic Micro-structure collimator
- Global lunar elemental composition mapping of surface via X-ray fluorescence
- X-ray celestial sources, Earth aurora and magneto-tail during cruise

Main features

- Energy range: 0.5 10 keV, 140 eV resolution.
- 24 (3 x 8) SCD detectors (12 x 32 deg FOV, noise 3 e⁻)
- Operat. temperature ~ -20°C, door shield (proton damage)
- 5.2 kg, 18 W (including XSM)

SMART-1 D-CIXS science

- D-CIXS map, 50 km resolution
- Absolute abundances Mg, Si, Al, (Fe)
- Bulk crustal composition

SMART-1 D-CIXS science

- Bulk crustal composition
 - Constrain theories of origin and evolution of the Moon.
- Mapping of Mg# = Mg/Mg+Fe :
 - Mg# as trace of evidence for a primitive source
 - Constraints on magma ocean model, evolution, impact effects
 - Study of South Pole-Aitken Basin (SPA) and other lunar basins

SMART-1 How did the Moon form?

Resolution range vs previous lunar missions

•	FOV/RES	AMIE	SIR	D-CIXS
•	Field of View (deg)	5.3	0.06	12x32
•	Resolution (mrad)	0.08	1	120
•	FOV in km	25	0.3	60x150
•	Res. Pixel	30 m	300 m	40 km
	– from perilune 30)0 km		
•	Spectral channels	5	250	100
•	Spectral range	500-950 nm	0.9-2.4 μm	.5-10kev

- Comparison with previous missions:
- Clementine 25 m B&W high res, colour 160 m (no spectra)
- Prospector neutron, gamma-ray (150-50 km)

SMART-1 Science Opportunity

- LUNAR SCIENCE
- 1st X-ray mapping for Mg, Al, Si at <50 km resolution
- 1st infrared spectral mineralogy mapping 0.9-2.5 microns +
- Local multi-band mapping at res. 30 m from 300 km
- Polar areas illumination and resource mapping
- Stereo mapping for Digital Elevation Models

- CRUISE SCIENCE
- Earth and magnetospheric imaging
- Long term X-ray monitoring of Sun & cosmic sources

Lunar Targets for SMART-1

	D-CIXS	SIR	AMIE
Global composition	Al, Mg, Si, (Fe)	olivines/pyrox	enes
Local Resources	"	66	
Highlands	Composition	Lateral chemic	cal variations
Mantle	source Mg#	basalt distribu	ition
Vertical lithology	basins, cen	tral peaks, sma	all craters
Impacts	SPA, basins	Rims, ejecta,	Crater counts
Exotic targets		Swirls, young	volcanoes
Polar areas		Ice spectra	Deep images
Regolith	weatheri	ng, phase ang	le, T effects
Topography			Stereo DEM

SMART-1 Data integration

- Intercalibration / Integration of data
 - between the SMART-1 instruments
 - with existing data from Clementine and Lunar Prospector
- Validated data released to Planetary Data System after 6 months
- SMART1 use for future Missions
 - Lunar-A/Selene,
 - Chandrayaan-1, Chang'e,
 - South Pole Aitken Basin Sample Return, US Lunar Reconnaissance Orbiter,
 - Future landers (US, Japan, China, ESA Aurora, ..)

SMART-1 Themes

- FORMATION AND EVOLUTION OF ROCKY PLANETS
 - chemical composition: Earth-Moon origin and evolution
 - signatures of accretional processes and giant bombardment
- COMPARATIVE GEOPHYSICAL PROCESSES
 - volcanism, tectonics, cratering, erosion,
 - deposition of ices and volatiles
- PREPARING FUTURE LUNAR/PLANETARY EXPLORATION
 - survey of lunar resources (minerals, volatiles, illumination)
 - high resolution studies for future landing sites and outposts
 - the Moon technology/science test-bed for planetary exploration

International Lunar Exploration

•	Muses-A Hiten Lunar Navigation (ISAS)	1990
•	Clementine (US, BMDO)	1994
	 Multi-band Imaging, technology demonstration 	
•	Lunar Prospector (US, NASA Discovery)	1998
	 Neutron, gamma ray low resolution mapping 	
•	SMART-1 (ESA Technology Mission)	2003
	 Instrument technology, geochemistry, high resolution, 	
•	Lunar A (J, ISAS Science)	2004
	 2 Penetrators with seismometers + equator cameras 	
•	SELENE (J, ISAS/NASDA)	2006
	 Ambitious orbiter instruments for science 	
•	Chandrayaan-1 (ISRO, India)	2008
	 Lunar Orbiter, launch PSLV 	
•	US Lunar reconnaissance orbiter	2008
•	South Pole Aitken Basin Sample Return (NASA New frontiers)	2009
•	Soft landers (US, China, Japan, Europe)	2010

Commissioning and present status •Subsystem commissioning completed in four days: AOCS, power, thermal, DH, TT&C, EP

•Radiation effects on electronics (SEU) and on star tracker (low E protons) were overcome. On 30 September the EP was fired successfully, and then thrusting. We survived Halloween solar storm!

- Escape of inner radiation belts in January 2004
- March 04 eclipse season
- In April 2004 apogee 80000 km, period 30 hours
- April 04 end payload commissioning, May 04 start cruise science
- Lunar resonances passes: 20 Aug, 15 Sept, 13 Oct 2004,
- Capture 17 Nov 04, arrival lunar science orbit Feb 05

• Further reports: COSPAR Paris 19-23July 04, ILEWG6 Lunar Conference Udaipur India 22-26 Nov 04

How to get involved

- Science data distributed to community (PDS) after 6 months
- Training opportunities
 - Engineering/science stages at ESTEC or instrument teams
 - ESTEC Young Graduate Trainee Programme
 - PhDs or engineering thesis using ESA missions
 - ESA post-doctoral programme (internal and external)
- Education/outreach projects and PR
 - Organise follow up students workshops
 - PR events
- Exploitation of SMART-1, Mars Express, Venus Express,
- SMART-1 follow up
 - Indian lunar mission 2008 (AO 10kg)
 - SMART-1 collaborations Japan Lunar-A/Selene,
 - US Lunar Reconnaissance orbiter
 - Future lunar landers (US, Japan Selene B, Europe)
- Synergies with future missions (Moon, Mars, Venus, Mercury)
- Follow-up : Aurora industrial, academic activities