Huygens and Mathematics

Henk J.M. Bos
Utrecht University

I. Huygens'
 Mathematical Drawings

A short tour

Rolling

1678

Catenary

1646

Curves: Tangents and Areas

1657

Curves:
The Paracentric Isochrone

1694

Curves:
A spiralling Isochrone

1694

Curves:

Solution of an "Inverse Tangent Problem"

$$
\begin{aligned}
& G E=x+y \\
& {[d y / d x=-y /(x+y)]}
\end{aligned}
$$

1694

At work on the Conchoid

II. Seeing through the Figures

- The Infinitely small: Infinitesimals and Limits
- Motion
- Processes: Modelling

Arclength and Areas

$$
s=\sqrt{ } \boxed{1+(d y / d x)^{2}} d x
$$

1657

Unrolling a Curve

Evolutes:

Second-order Infinitesimals

1659

The radius of Curvature

Fall through medium with resistance $:: v$; Huygens' Model
velocity
acceleration
time
resistance

1668

Fall through medium with resistance $:: v$; Huygens' Model
velocity
acceleration
time
resistance

1668

Fall through medium with resistance $:: v$; Huygens' Model

velocity

acceleration
time
resistance

1668

Fall through medium with resistance $:: v$; Huygens' Model
velocity
acceleration
time
resistance

1668

Fall through medium with resistance $:: v$; Huygens' Model
velocity
acceleration
time
resistance

1668

Fall through medium with resistance $:: v$;

 Huygens' Model
velocity :: resistance

Which curve?

Huygens: "Logarithmica"
$[y=\ln x]$

1668

Fall through medium with resistance $:: v$ ； Huygens＇Model

$$
\begin{aligned}
& d v / d t=g-\text { 國 } v \\
& v=g / \text { 國 }+e^{- \text {㿿 } t}
\end{aligned}
$$

1668

Comments

- The figure represents a process of motion
- All variables etc. visible in their mutual relations
- A geometrical model
- (Not a collection of equations)
- Geometrical Physics

Motion,
 resistance $:: v$;
 Huygens’ Model

Further results

1668

Motion,
 resistance :: v^{2}; Huygens' Model
 ;

Conclusion

- Huygens' Mathematics:

Geometrical Analysis

- A phase in the development of Analysis
- Wiped out by the Calculus
- Yet: authentic mathematics, performed by a brilliant master
- As valuable and enjoyable as any modern mathematics.

