Titan Huygens Conference ESTEC, 13-17 April 2004

Titan's atmosphere and surface from imaging and spectroscopy in the past decade Athena Coustenis

LESIA, Observ. de Paris-Meudon, France

Titan's mid-IR space observations

SPECTRAL COVERAGE & RESOLUTION of CASSINI/CIRS and ISO/LWS-SWS

ISO: Infrared Space Observatory	LWS: Long Wavelength Spectrometer	CR: Grating mode
CIRS: Composite Infrared Radiometer Spectrometer	SWS: Short Wavelength Spectrometer	FP: Fabry-Perot mode
	for SA: focal plane 134	

Titan, the shy giant

Titan is the second largest satellite in our Solar System and lies hidden beneath a thick shroud of haze which has prevented until recently a direct detection of its surface. Its atmosphere is mainly composed of N2, CH4 and H2. Numerous organics were detected, during the Voyager flyby in 1980.

Surface Radius	2575 km		
Mass	1.35×10^{23} kg (=0.022 × Earth)		
Mean Density	1880 kg m ⁻³ 1.23 × 10 ⁹ m (=20 Saturn radii) 9.546 AU		
Distance from Saturn from Sun			
Orbital Period around Sun	15.95 days 29.5 years		
Obliquity	26.7°		
Surface Temperature	94 K		
Surface Pressure	1.44 bar		
Composition (mole fractions): Nitrogen	N_2	90-97%	
Argon	Ar	0-6%	
Methane	CH ₄ 0.5-4		
Hydrogen	H ₂ 0.2%		
Ethane	C_2H_6	1×10^{-5}	
Acetylene	C_2H_2	2×10^{-6}	
Propane	C_3H_8 5 ×		
Ethylene	C_2H_4 1 × 10		
Diacetylene	C_4H_2 1 × 1		
Hydrogen Cyanide	HCN 1×10^{-1}		
Carbon Monoxide	CO ~10 ⁻⁵		
Carbon Dioxide	CO_2 1 × 10 ⁻⁸		
Water	H_2O 8 × 10 ⁻⁹		

Informations obtained by Voyager 1 (IRIS):

- N2 is the major component
- CH4 & other hydrocarbons
- H2
- nitriles
- Little oxygen: CO, CO2

Interest for pre-biotic chemistry

Titan's atmosphere

See Poster by Lavvas et al.

Coustenis & Bézard (1995)

Coustenis & Bézard (1995)

Voyager IRIS: Coustenis et al. (1991)

The Infrared Space Observatory

- ISO is an Earth-orbit infrared observatory (November 1995 - April 1998, duration of 28 months)
- The He-cooled telescope diameter is 60 cm.
- ISO operates in the 2 200 micron spectral range using 4 instruments:
 - 2 spectrometers (SWS and LWS)
 - SWS: 2.5 45 mm
 - LWS: 45 200 mm
 - 1 photometer (ISOPHOT)
 - PHT-S: 2.5-5 & 6-12 mm
 - 1 camera (ISOCAM)

in two different modes:

- a Grating mode (R=1500 3000)
- a Fabry Pérot mode (R=10000 20000)

ISO/SWS vs V1/IRIS

The Titan ISO data are highresolution disk-averages

- acquired on January 10
- and December 27 1997
- With all the instruments
- Compared to Voyager/IRIS the thermal infrared spectra afford 10 times higher resolution
- The usable SWS range covered is from 7-17 micron
- The 7.7 μ m (1304 cm⁻¹) CH₄ band gives the T profile
- Then, through the radiative transfer equation, the best fit of the observed emission in the rest of the spectrum gives the mean molecular abundances

ISO/SWS : Coustenis et al. (2003)

ISO/SWS : Coustenis et al. (2003)

CH₃D and the D/H ratio

ISO/SWS : Coustenis et al. (2003)

Evidence for water vapor on Titan

– <u>Context:</u>

- CO₂ and H₂O have been recently discovered in the stratospheres of the giant planets with ISO (Feuchtgruber et al., 1997).
- Water vapor was expected in Titan's atmosphere since the discovery of CO and CO_2 . H_2O is deposited in the upper atmosphere in the form of icy particles. Then:
 - H_2O vaporization & photolysis $\rightarrow OH$
 - OH + hydrocarbon radicals $(CH_3) \rightarrow CO$
 - $CO + OH \rightarrow CO_2 + H$

Observations:

- We observed Titan in December 1997 during a total of 4.2 hrs integration time with SWS in the grating mode, with resolving power of 1800-2050 (AOT-02).
- We found two emission features at locations where pure rotational water lines are expected. After reduction of the data, the lines appear as follows:
- Line position
mnCont. level Sat.
Jy H_2O Peak flux std dev Det.mn cm^{-1} JyJyJy39.425456.50.61.60.28 σ
 - 43.9 227.8 59.5 0.5 2.0 0.25 8 **o**

ISO/SWS : Coustenis et al. (1998)

Water vapor abundance and flux

–Synthetic spectra were generated with a radiative transfer model based on T, and other opacity sources from the rest of the ISO/SWS spectrum and compared with the data.

-A constant mixing ratio of 4 10^{-10} can fit the data.

-Also, a vertical distribution is compatible:

~0.4 × Lara et al. (1996)

-The associated mole fraction at 400 km of altitude is

 $q(H_2O) \sim 8 \times 10^{-9}$

-The column density is $\sim 2.5 \times 10^{14}$ mol cm⁻² above the surface.

-The inferred water influx at Titan at 700 km altitude is

 $(0.8 - 2.8) \times 10^6 \text{ mol cm}^{-2}\text{s}^{-1}$,

–At Saturn: $(1.5-5) \times 10^6$ cm⁻²s⁻¹ (Feuchtgruber et al., 1997). –Then, H₂O flux (Saturn/Titan) ~ <u>0.5 - 6.2</u>

– We find that H₂O flux on Titan is $\sim 1.6 \times 10^6$ mol cm⁻²s⁻¹, and flux (Saturn/Titan) $\sim 0.5 - 6.2$

- The H₂O flux is in agreement with Lara & al. (1996) value allowing to fit the observed CO_2 abundance by Voyager and ISO. This agreement holds regardless of CO adopted, because CO_2 is independent of CO at equilibrium (CO equil. lifetime ~10⁹ years).
- H₂O influx may have two primary sources:
 - Interplanetary dust component in the Solar System: IC H₂O influx predicted by the meteroid ablation model in agreement with this work [2 × 10⁶ mol cm⁻² s⁻¹: English & al., 1996]
 IC (Saturn/Titan) ≈ 7.5 (due to gravitational focussing) [marginally in agreement with ISO upper limit of 6.2]
 - Local dust component (sputtering and collisions from icy satellites and rings): LC

LC also in favor of Saturn (due to gravitational energetics and magnetic lines of force)

<u>But:</u> - Higher velocities of icy particles and sputtering from Iapetus, Hyperion, and Phoebe could bring more water on Titan.

Evidence for benzene on Titan

Context:

- Benzene has been recently discovered in the stratospheres of the giant planets Jupiter and Saturn with ISO (Bézard et al., 2002) but not in Uranus and Neptune. Nothing appeared in the V1/IRIS data at 674 cm⁻¹ at the resolution of 4.3 cm⁻¹.
- Benzene was expected in Titan's atmosphere with a formation dominated by propargyl recombination through (Wilson et al., 2002) :

 $\begin{array}{c} 2(\mathrm{CH}_4 + \mathrm{hv} \rightarrow \ ^1\mathrm{CH}_2 + \mathrm{H}_2) \\ 2(\mathrm{C}_2\mathrm{H}_2 + \ ^1\mathrm{CH}_2 \rightarrow \ \mathrm{C}_3\mathrm{H}_3 + \mathrm{H}) \\ \underline{\mathrm{C}}_{\underline{3}}\underline{\mathrm{H}}_{\underline{3}} + \underline{\mathrm{C}}_{\underline{3}}\underline{\mathrm{H}}_{\underline{3}} \rightarrow \underline{[\mathrm{n-}]} \ \underline{\mathrm{C}}_{\underline{6}}\underline{\mathrm{H}}_{\underline{6}} \\ 2\mathrm{C}_{2}\mathrm{H}_2 + \mathrm{CH}_4 \rightarrow \ \mathrm{C}_{6}\mathrm{H}_{6} + 2\mathrm{H} + \mathrm{H}_2 \end{array}$

We observed Titan in December 1997 during 1 hr of integration time with a resolving power of ~2000 in the 14.76-14.94 μ m region (dedicated observation). We then clearly observed HC₃N in emission at mid-latitudes at 663 cm⁻¹ and inferred and abundance of about 5±3 10⁻¹⁰ relevant to the 9-mbar pressure level.

Benzene on Titan

We found an emission feature at 674 cm⁻¹ where the v_4 band of C_6H_6 occurs. We have found a 3Jy additional flux which can be explained with a benzene emission of about $4\pm 3 \ 10^{-10}$ relevant to the 9-mbar region and corresponding to a column density of $2 \ 10^{15}$ mol cm⁻² (Coustenis et al., 2003).

	Results			
•Molecule	Voyager	ISO Ratio		
$\bullet C_2 H_2$	3.0 10-6	3-5.5 10 ⁻⁶ ↑ (v.d.)		
$\bullet C_2 H_4$	1.5 10-7	1.2 10-7	\rightarrow	
$\bullet C_2 H_6$	1.5 10-5	2.0 10-5	\rightarrow	
$\bullet C_3 H_4$	6.5 10 ⁻⁹	1.2 10-8	\rightarrow	
$\bullet C_3 H_8$	7.0 10-7	2.0 10-7	\rightarrow	
$\bullet C_4H2$	1.5 10-9	2.0 10-9	\rightarrow	
•CH ₃ D	1.1 10-5	6.7 10-6		
•D/H	1.5 10-4	8.7 10-5	\rightarrow	
• C_3H_4 (allene)		<2.0 10-9		
• C_6H_6 (benzene)		4 10-10		
•HCN	2.0 10-7	3.0 10-7	\rightarrow	
•HC ₃ N	<1 10-9	5 10-10		
$\bullet C_2 N_2$	<1 10-9			
•CO ₂	1.5 10-8	2.0 10-8	\rightarrow	
• $H_2 \tilde{O}$ @ 400 km		8 10-9		

With respect to a Voyager-inferred modeling of the Titan disk-average, we find that the differences with the Voyager stratospheric abundances are small but the mixing ratios are more precise.

- Coustenis et al., 1993, *Icarus* 102, 240-260; Coustenis and Bézard, 1995, *Icarus* 115, 126-140
- Coustenis et al., 2002, *Icarus*, in press. ; Coustenis et al., 1998, *Astron*. & *Astroph*. 336, L85.

Table 1. Atmospheric composition of Titan

From Flasar et al., 2004

	Gas	M o le fr a cti on			Comments-Ref.	
n ts						
11 15	N ₂		0.8 5-0.98			In ferred i n d i rect ly (a)
	A r		< 0.07			Inferred i n d i rect ly (b)
	СН ₄		0.005-0.034			In the stra to sphere (b)
			0.03-0.085			N ear the surface (b, l)
1	H ₂		0.0011-0.0013			(b)
nstitue nts		E quato r	North	Pole	D is k-ave rage	
		(<i>c</i>)	(d)	<i>(e)</i>	
		0.5-20 mbar	$\sim 0.1 m b a r$	~ 1.5 mb ar	0.5-20 m b a r	
·bons						
е	C 2 H 2	2.85×10^{-6}	4.7×10^{-6}	2.3×10^{-6}	5.5×10^{-6}	
	$C_{2}H_{4}$	1.5×10^{-7}		3×10^{-6}	1.2×10^{-7}	
	C ₂ H ₆	1.5×10^{-5}	1.5×10^{-5}	1.0×10^{-5}	2.0×10^{-5}	
e tylene	C ₃ H ₄	6.5×10^{-9}	6.2×10^{-8}	2.0×10^{-8}	1.2×10^{-8}	
	C ₃ H ₈	7 .0 \times 1 0 ⁻⁷		5.0×10^{-7}	2.0×10^{-7}	
ne	C ₄ H ₂	1.5×10^{-9}	4.2×10^{-8}	2.7×10^{-8}	2.0×10^{-9}	
	C ₆ H ₆				4.0×10^{-10}	
tera ted	CH ₃ D	$1 .1 \times 10^{-5}$			6.7×10^{-6}	
ı cya nide	H C N	1.95×10^{-7}	2.3×10^{-6}	4.0×10^{-7}	3.0×10^{-7}	
et y le n e	HC ₃ N	$\leq 1 \times 10^{-9}$	2.5×10^{-7}	8.4×10^{-8}	5.0×10^{-10}	
1	C 2 N 2	$\leq 1 \times 10^{-9}$	1.6×10^{-8}	5.5×10^{-9}		
i le	CH ₃ CN				1.5×10^{-9}	Atl mbar(f)
cet y le n e	C 4 N 2	S o lid ph ase			(k)	
ompounds		_				
p or	H ₂ O				8×10^{-9}	A t 0 .01m bar (g)
i o x i de	CO ₂	1 .4 5×10^{-8}	$\leq 7 \times 1 0^{-9}$	$\leq 7 \times 1 0^{-9}$	2.0×10^{-8}	
o noxide	СО				$(2.2-4.2) \times 10^{-5}$	In the troposphere (h)
					$(2-3.9) \times 10^{-5}$	In the lower and in
					$(0.33 - 0.9) \times 10^{-5}$	theh igher
						stratosphere (i)
					$4 - 6 \times 1 0^{-5}$	In the higher
						stra to sphere (i)

Ta ble 1. Some organics, as yet unobserved on Titan in the therm al IR, but potentially observable with CIRS and their deduced upper limits in TitanÕs atmosphere from previous observations

Studied Compounds	Strongest signatures		Upperlimit of meanmi xingratioin Titan's stratosphere	
	Frequency (cm ⁻)	B ands trengthat 300 K(cm-2 atm-1)	using Voyager IRISs pectra	usingISO disk- averaged ata
Hydrocarbons				
C H ₂ CC H ₂	356	6 5	$5 \times 1 \ 0^{-9}$ (a)	2×10^{-9} (b)
	845	407		
C 4 H 4	629	288	$7 \times 10^{-10} (c)$	
C 6 H 2	622	4 2 8	$4.4 \times 1.0^{-10} (d)$	
C ₈ H ₂	621.5	496	$4 \times 10^{-10} (e)$	
N itrile s		·	-	
CH ₃ CN	362 [†]	4.4		
C H ₂ C H CN	230	1 0	$8.4 \times 10^{-8} (g)$	$< 5 \times 10^{-10} (b)$
	954	100		
C H ₃ C H ₂ C N	207	1 5	2.5×10^{-7} (a)	$< 1 \times 10^{-10} (b)$
	1075	3 7		
C H ₃ C H ₂ C H ₂ C N	728/742	3 .5	$5 \times 1 \ 0^{-7} \ (a)$	
(C H ₃) ₂ C H CN	538	3.3	$2 \times 1 \ 0^{-7} \ (a)$	
ΔСΝ	726	1 9	$1.5 \times 10^{-7} (a)$	
	818	3 4		
C H ₃ CCC N	338	1 0 0	$1.0 \times 10^{-8} (a)$	
	499	9 1		
C H ₃ C H CHC N	728	2 3 0	2.5×10^{-7} (a)	$< 5 \times 10^{-10} (b)$
C H ₂ C H CH ₂ C N	557	6 4	$4 \times 1 \ 0^{-8} \ (h)$	$< 5 \times 10^{-10} (b)$
	942	1 1 0		
$C H_2 C (C H_3) CN$	535	3 3	7.5×10^{-8} (<i>h</i>)	$< 5 \times 10^{-10} (b)$
	928	1 3 0		
C 4 N 2	614	3 4. 4	5.6×10^{-9} (<i>i</i>)	
N C CHC H CN (tra n s)	947	178	$1 \times 10^{-8} (j)$	
Other Norganics				
C H ₃ N C	526	8.8	$1.3 \times 10^{-9} (k)$	
CH ₂ N ₂	419	1 4 4	$5.0 \times 10^{-9} (k)$	
C H ₃ N ₃	250	9	$5.4 \times 10^{-9} (k)$	

[†] Featureno tye tob served. CH_3CN detected in millimeter observations (l), with a derived mole fraction 1.5×10^{-9} at 1 m bar.

From Flasar et al., 2004

New species for Cassini?? - not any more !

ISO : Coustenis et al., 2003

TEXES :Roe et al., 2004

Titan vs Earth

« A planetary-scale natural laboratory for the study of conditions prevailing on the primitive Earth »

Titan's surface

•Global ocean unrealistic

- Radar echosTide effectsImages & spectra
- ⇒Local hydrocarbon liquid extents? Mountains? Rocks ? Ice?
- \Rightarrow Investigating in the near-IR

Titan Earth-based near-IR observations

Ground-based spectroscopy in the near IR

Titan geometric albedo

Longitude of Central Meridian

Griffith & al., 1998, Coustenis et al., 1995 Lemmon & al., 1993

ISO- PHT Titan 2-5 micron

Titan's flux observed with ISO/PHT in the 2.5-4.9 mm range

Titan's flux observed with ISO/SWS and ISO/PHT in the 2.8-3.6 mm range

Part of this window (the 2.9 -3.1 μ m region) has been observed from the ground [Griffith et al., 1998; Geballe et al., 2003] who reported a geom. albedo of 0.02 on a normal night and 0.05 in the case of a sudden increase at 3 micron, interpreted as a cloud in Titan's troposphere.

Titan's 2.75 micron window

Titan's flux observed with ISO/SWS and ISO/PHT in the 2.5-3.0 mm range

- The maximum flux in the 2.8- μ m window is 0.14 Jy at 2.7 and 2.78 μ m, yielding a geometric albedo of 0.04 in the center of the window and 0.01 at 3 micron.
- ⇒ compatible with hydrocarbon lakes and water ice-rock mixtures on the surface. No tropospheric clouds observed by ISO.

MODEL

We use a radiative transfer model to simulate Titan's geometric albedo from an updated version of McKay *et al.*'s (1989) code (which considers spherical aerosols). In this version of the code we work with fractal aerosols (Rannou *et al.* 1997, 2003).

The main parameters needed to define the aerosol distribution are the haze production rate, the haze production pressure, the aerosol charging rate and the eddy diffusion coefficient. For the geometric albedo we also need the aerosol imaginary refractive index (Khare *et al.* 1984), the ground reflectivity, the methane vertical profile (Lellouch *et al.* 1989) and the methane absorption coefficients. These were obtained from the Hilico *et al.* (1994) database. This database, built from a theoretical model of the methane-methane interactions, give an update of all methane's absorption lines between 0.01 and 6200 cm⁻¹ (fig. 3).

See Poster by Negrao et al.

Methane absorption coefficients from the Hilico et al. (1994) database in the 2.4-4.9 mm range

TITAN'S SPECTRUM FROM 2-5 MICRON

Model vs ISO/PHT and ISO/SWS

TITAN'S 2.75-MICRON SURFACE ALBEDO

Titan's surface albedo from the 2.75 micron window is found to be in the 0.001-0.17 range (Coustenis et al., 2004; Negrao et al., 2004)

The 0.94 mm window on Titan with OASIS

OASIS Spectro-imaging: Resolved Titan's disk from 0.86 to 1.03 micron

Hirtzig et al. (2004, PSS in press and see poster)

Fully processed images of Titan.

- The two datacubes of Titan acquired on 2000 Nov 17th. On the top panel are plotted the wavelength-averaged disks of Titan.
- The bottom panel shows the average spectrum for each datacube in flux (10⁻¹⁶ erg/s/cm²/Angst/arcsec²) vs wavelength (nm).

Spatial analysis

- Spectral averages in some areas
- Intercomparison of resulting spectra

See Poster by Hirtzig et al.

Spatial analysis

Spectra from Titan, extracted from the merged datacube. Quantities plotted are geometric albedo vs wavelength (nm). Each colour correspond to one area on Titan's disk. Center (C) is black, North (N) is blue, South (S) is red, West (W) is green and East (E) is yellow.

Titan's surface at 0.94 µm

Image of Titan's surface in the center of the methane window (at 939.6 nm). Contrast (left image only) is enhanced by a square law. The spectrum shown here is taken from the central pixel on Titan's disk, with a reddish cursor indicating the current wavelength probed in the center panel. The third panel returns the image in the methane window after the subtraction of an atmospheric image (here 910 nm).

Titan's albedo

Titan's albedos in the 0.94 μm window, from 920 to 950 nm, representative of the surface contribution.
The main graph shows Titan's geometric albedos for the brightest and darkest regions on Titan.

The insert shows the surface albedos computed with our radiative transfer code for these two regions, as well as the methane spectrum as determined by Karkoschka 1994 (in km.am⁻¹) in red.

Titan's surface albedo

Titan imaging

HST 1994

ADONIS (ESO) 1994-1995

Titan's new faces 2001-2002

with bigger telescopes

Keck images of Titan from work by Roe et al., & Brown & al. (2002)

ESO/Very Large Telescope NAOS adaptive optics system Gendron et al. (2004, A&A,in press)

Adaptive optics systems

PU'EO /KIR

- 3,6-m CFHT (Hawaii)
- bandpass 0,7 2,5µm
- CCD 1024x1024
- 0.0348 "/pixel

 NAOS/CONICA

 •8-m VLT/UT4 (Chile)

 •bandpass 0,9 - 5μm

 •CCD 1024x1024

 •0.01325 "/pixel

Titan's leading side in 1998: PU'EO

PUEO images taken in 1998 at 1.29 (J1) and 1.18 (J2) μm (Coustenis et al., 2001). Atmosphere:

•bright southern pole (smile)

•bright feature on the Western (morning) limb

- Phase effect? No should be on the other side
- Interpreted as diurnal effect (morning fog)

Surface:

•Bright equatorial region surrounded by darker areas

Narrow-band filters used for Titan

Name	Ι (μm)	Lower levels probed in the	
		center of the image	
I	$0,834 \pm 0,097$	Stratosphere + troposphere	
NB_1.04	$1.040 \pm 0,075$	Tropopause	
HeI	$1,083 \pm 0,004$	Surface + lowest troposphere	
PaGamma	$1,094 \pm 0,005$	Surface + lower troposphere	
J2	$1,181 \pm 0,064$	Stratosphere	
Jcont	$1,207 \pm 0,007$	Lower strato + troposphere	
J1	$1,293 \pm 0,070$	Surface+lower troposphere	
Hcont	$1,570 \pm 0,010$	Surface + troposphere	
H1	$1,600 \pm 0,080$	Surface + lower troposphere	
H2	$1,640 \pm 0,050$	Surface+troposphere	
FeII	$1,644 \pm 0,007$	Stratosphere (200 km)	
NB_1.75	$1.748 \pm 0,013$	Stratosphere (140 km)	
Κ'	$2,120 \pm 0,170$	Stratosphere + troposphere	
H2 (1-0)	$2,122 \pm 0,010$	Troposphere	
BrGamma	$2.166 \pm 0,010$	Stratosphere (165 km)	
K	$2,200 \pm 0,168$	Stratosphere + troposphere	
Kcont	$2,260 \pm 0,030$	Stratosphere (260 km)	

Diffraction limits:	λ	PU'EO	NAOS
	1.28 µ	0.08"	0.033"
	1.64 µ	0.10"	0.042"
	2.12 µ	0.12"	0.055"
About 20 p	ivals across T	itan's dick at he	act

About 20 pixels across Titan's disk at best

The PUEO 2002 data: Titan at GEE

The PUEO 2002 data: Titan at GWE+2

It's big, it's fast, it's bright !!

PUEO: November 2002

NAOS: November 2002

now you see it - now you don't

2.12 micron

2.17 micron

The feature's source is located between 15 and 140 km in altitude

How does it move ?

<u>Trajectory:</u> Ellipse ? \rightarrow seems confined mostly within the 80°S parallel

Rotation: PROGRADE

<u>Speed:</u> 10°/h i.e. 125 m/s (Surface motion is 22 degrees per day (i.e. about 10 m/s))

Clouds and vortices...

NAOS images in the H2(1-0) filter : Gendron et al. (2003)

Titan's surface in 1998

Titan's surface on the leading hemisphere observed with PUEO. The bright equatorial feature, appearing bright both in J and in H, probably related to ices connected with topography (relief). Dark areas are visible in the North-East and to the West of the images, suggesting the presence of additional surface components (Coustenis et al., 2001).

GWE Always bright ... GEE

PUEO: November 2002

Titan at GEE : surface albedos

PUEO 2002

Titan's trailing surface in 2002

Titan's surface on the trailing hemisphere observed with NAOS in 2002. The images here were obtained after deconvolution and subtraction among the "window" filters and near-by ones in the CH_4 band: 1.08-1.04, 1.09-1.04 and 1.28-1.24 μ m. There are bright spots at several locations near the center and in the N-E side (Gendron et al., 2004).

Keck images

(Brown et al., 2002; Roe et al., 2002)

The « dark » side of Saturn's moon

The Surface of Titan from PUEO

Cartography from H images

- Surface features:
 - -110° : bright continent
 - 350° : large bright feature capped with dark area
- Comparison of maps at different wavelengths :
 - Similarly bright areas possibly contain CH4/C2H6 ices (and topography)
 - Brightest peaks are not exactly at the same position
 - Signature of surface chemical composition?
Map of Titan's surface by NAOS

Yes ! Huygens will still land on a very exciting site

Conclusions

Atmosphere:

- Asymmetry inversion in progress detected/confirmed at high altitudes
- "New" atmospheric bright features observed on the limb: Vortex? Cloud? Aurora? Permanent or reforming? Its source? Its energy?
- Morning fog seen in 1998: not definitely confirmed in 2001-2. But it's not a phase effect and perhaps some hints. We need more high-quality data with a low phase effect on the evening side.

Surface:

- confirmation of previously observed: bright area (probably related to relief) at 10°S and 110°E
- Bright at all observed wavelengths (close to 1.3, 1.6 and 2 μm).
- Bright areas observed on the trailing side: the new map is very complex and not interesting only at GEE.

Cassini S/C – CIRS Location

Fig. 7 Top panel: Voyager IRIS low- and high-latitude averaged Titan spectra at 4.3 cm⁻¹ resolution, with several emission bands identified. *Bottom panel*: Simulation of CIRS limb viewing at an altitude of 125 km with 0.5 cm⁻¹ resolution. After Coustenis *et al.* (1993).

Fig. 9 Synthetic Titan spectrum at 10-200 cm¹, with viewing at an emission angle of 48°. (a) radiances, (b) brightness temperatures. Rotational lines of $H^{12}CN$, CO, CH_4 , $H^{13}CN$, and H,O are indicated. After Cousteniset *al.* (1993).

The Huygens probe

Perspectives

Adaptive optics:

- PUEO/CFHT : new data with more filters and at more phases to complete cartography and atmospheric investigation
 - (new observations in Jan. 2004 and request for time in Dec 04 & Jan. 05)
- NAOS & ISAAC @VLT
 After first GT Titan observations :
 (new GT allocation : spectroscopy & imaging April 2004 & new application for end 04-05)

Spectro-imaging:

• WHT/OASIS : time application for new observations in Jan. 2005

Cassini/Huygens: a few more months to go!

