Titan in Saturn's Magnetosphere: *The Cassini Plasma Spectrometer (CAPS) Investigation*

 \rightarrow The experiments begin on October 26, 2004 \leftarrow

David T. Young

Southwest Research Institute San Antonio, TX 78212

Titan: From Discovery to Encounter April 13-17, 2004

Titan 1

- Voyager data are the (very limited) canonical basis for our current understanding of Titan's ionosphere and magnetosphere and interactions with Saturn's magnetosphere.
- The goal of CAPS (and MAPS*) investigations is to update and vastly extend our knowledge of Titan (*our motto: 10 x Voyager!*).

*Magnetosphere and Plasma Science Working Group

CAPS' fundamental goal is to measure and interpret the distribution function f_i (\mathbf{r} , \mathbf{v} , t) for all plasma components:

i => electrons and ions of all species

- Electrons => ionization source
- Titan species => chemistry, bulk plasma processes, tracers
- Saturnian species => sputtering
- $-\mathbf{r} => location$
 - Relative to Titan (upstream, ionosphere x-section, wake, flux tube)
 - Relative to Saturn (local time)
- v => 3-D velocity vector
 - Preferred directions: s/c ram, Saturn co-rotation, and magnetic field
- t => time scales
 - Fast time resolution (2 ~ 4 s) for 2-D dynamics & major ion composition
 - Moderate time resolution (3 ~ 4 min) for 3-D & high mass resolution
 - Comprehensive survey for synoptic studies

CAPS Measurement Capabilities

CAPS consists of 3 sensors:

Electron Spectrometer

Energy range: 0.6* to 28,750 eV Field-of-view: 5.2° x 160° Sensitivity (Titan): 3300 cts/s/el/cm³

Ion Beam Spectrometer

Energy range: 1.0* to 49,800 eV Field-of-view: 1.5° x 160° Sensitivity (Titan): 3200 cts/s/ion/cm³

Ion Mass Spectrometer

Energy range: 1.0* to 50,280 eV Field-of-view: 8.3° x 160° Mass range: 1 to 100 amu

Sensitivity (Titan): 500 cts/s/ion/cm³

* May be limited by spacecraft potential

Resolution: 0.17 **DE/E** Resolution: 5.2° x 20°

Resolution: 0.014 **D**E/E Resolution: 1.5° x 1.5°

Resolution: 0.17 **D**E/E Resolution: 5.2° x 20° Resolution (atomic): 60 M/DM Resolution (mol.): ~2600 M/DM

IMS capability for splitting isomers—high resolution spectrum

IMS capability for splitting isomers—low resolution spectrum

Combined spectra and analysis

IBS capability for mass \rightarrow **¥**

Titan 10

Comparison of CAPS with Voyager PLS and LECP

- CAPS fills Voyager's energy gaps:
 - Voyager PLS and LECP energy range gaps:
 - 6 to 22 keV (electrons)
 CAPS: 0.001 ~ 29 keV
 - 6 to 28 keV (ions) CAPS: 0.001 ~ 50 keV
- <u>CAPS has an Ion Mass Spectrometer (IMS) (also INMS)</u>
 - Voyager did not have a mass spectrometer—relied on E/q
 - CAPS: 1 ~ 100 amu @ M/\DM ~ 60 (atomic); ~2600 (molecular)
- CAPS can control its pointing over $\sim 2\pi$ sr
 - PLS: 3 sensors on Earth-point (ions only)
 - PLS: 1 sensor into co-rotational flow (ions and electrons)
- CAPS 2-D in 2s (electrons), 4s (ions), 3-D in ~180s
 - PLS full measurement cycle 96 s for all species

Cassini and Voyager: comparing encounters:

- Voyager 1: 1 Titan encounter
 - V_F = 17.3 km/s => PLS got 7.4 electron distributions/R_T
 - C/A = 4394 altitude @ 1330 Saturn LT
- Cassini: 44 Titan encounters
 - $-V_F = 5.8$ km/s => CAPS ELS gets 222 electron distributions/R_T
 - 43 flybys are below Voyager 1's C/A altitude
 - 25 are rated good to very good for CAPS observations
 - 24 are at 950 km altitude over 13:30 21:00 LT:

Our current understanding of Titan interactions

Titan in Saturn's magnetosphere

Example of planning plot for Titan close encounter (T14)

04:24 Saturn LT

Key questions to which CAPS can contribute:

• What is the composition and chemistry of Titan's ionosphere?

• What is the nature and morphology of Titan's induced magnetosphere?

• What does Titan contribute to Saturn's magnetosphere?

What is the composition and chemistry of Titan's ionosphere?

- Ionization and energy sources (ELS):
 - Suprathermal (~ few 100's eV) electron precipitation
 - Photoelectron production
 - Total electron content (also RPWS Langmuir probe)
- Composition (IMS)
 - Complements INMS
 - Energized ion components (e.g., in flanks & tail) not seen by INMS
 - Separates isomers (e.g., N₂⁺ vs. H₂CN⁺)
 - Total elemental abundances
- Ion velocities (IBS)
 - Ion velocities to ~ 20 m/s cross-track
 - Ion composition to M ~ $\pmb{\mathbb{Y}}$

How is Titan's magnetosphere formed?

Measurements are needed over a range of encounters:

- 1. Far upstream: co-rotational flow (mass, momentum, energy)
- 2. Near upstream: mass loading by Titan's exosphere
- 3. Near Titan: flow field around the ionopause obstacle
- 4. Near tail: structure, chemistry, mass loss
- 5. Far tail: 'plume' formation

3-D MHD velocities (km/s) (Ledvina & Cravens, PSS, 46, 1175, 1998)

3-D MHD simulation—Voyager 1 trajectory (Nagy et al., JGR, 2001)

21

3-D hybrid simulation—Voyager 1 trajectory (Brecht et al., JGR, 2000)

22

Chemistry + 3-D MHD simulation (Chiu et al., GRL, 28, 3405, 2001)

CASSINI flyby15 3-D MHD — 10 Cassini у, R_T z, R_T 0 -10 -5 nho, 1/cm/3 0 0 0 0 0 0 0 -2 -2 2 0 2 -4 0 s/ 450 -50 ش_100 -50 -2 0 -2 2 2 0 -4 -4 s/wy , 20 L 20 0 nz' km/s -20 -2 -2 2 2 0 21 0 10 Bx, nT By, nT 0 -2└ -4 200 ſ -10 -4 0 -2 0 -2 2 0 2 Bz, nT ≥ 100 -5 -10^L -4 0L -4 -2 0 0 2 -2 2 x, R_T x, R_T

trajectory **Titan encounter** T15 1911 km c/a

(Kabin and Gombosi, UM, 1998)

How does Titan affect Saturn's magnetosphere?

Titan's loss = Saturn's gain: three processes:

- Ion pickup and loss down Titan's wake (all species)
 - \rightarrow Mass loading of co-rotational flow
 - →Relationship of co-rotation shear to aurora?
- Atmospheric sputtering (primarily N, N₂) (Sittler et al., 2004)
 - \rightarrow lonization of sputtered atmosphere
 - \rightarrow Acceleration by pickup
 - \rightarrow Radial diffusion and acceleration
 - \rightarrow Surface weathering of inner icy satellites
 - \rightarrow Pickup of sputtered surface products
- Escape of torus ions as planetary wind (Goertz, 1983)
 → Return as accelerated plasma in substorms (Earth analog)?

Voyager 1, electrons, Eviatar et al, 1982

Titan 27

Conclusions

- 1. There is no lack of Titan models, but they are constrained in most cases by only one set of measurements (Voyager 1).
- 2. Thus the models have never been tested, except for self consistency, over a range of conditions (mass-momentum-energy inputs, LT, solar wind conditions, etc.)
- 3. Since many models already exist there should be a tidal wave of scientific productivity after the first few Titan encounters.
- 4. There will be more than enough data to work on until > 400th Huygens' anniversary.