The Evolving Violent Universe

L. Stella - INAF Osservatorio Astronomico di Roma

- Outline:
 - New physics with neutron stars and black holes
 - Evolution and environmental impact of black holes
 - Exploding stars and gamma ray bursts

Compact Objects: Neutron Stars

Radio Pulsars (rotation power)

Relativistic binary radio pulsars

- Accurate gravity
- Direct measurements at R~106-107 Schwarzschild radii

Black Holes

 Stellar mass Black holes in Xray binaries (5-15 Mo)

> Mass criterion: compact star with M > 3.2 Mo

- Supermassive black holes in galactic nuclei (10⁶-10⁹ Mo)
 Active Galactic Nuclei (AGN)
 - Accretion power
 - Rotation power?

Probing strong gravitational fields with Quasi Periodic Oscillations (QPOs)

Accreting neutron star

Accreting black hole

- revealed through broad peaks in the power spectrum of the X-ray intensity fluctuations.
- related to frequencies of particle motion in the strong gravitational field regime (few Rs)

10 km radius, 1.4 M ⊙ neutron star

1200 Hz

500 Hz

If individual wave trains could be seen, then:

- gravity close to event horizon
- black hole mass and spin
- neutron star radii and mass distribution; equation of state of ultradense matter

Probing strong gravitational fields with X-ray Fe-lines from accretion disks

- Very broadened line profiles from innermost regions of accretion disks
- Strong field relativistic effect:
 Doppler shifts and boosting,
 gravitational redshift, strong
 field lensing
- Observed in several Active Galactic Nuclei

Line profile and time variability
black hole mass and spin
Polarisation
strong field deflection
geometry

In situ probing of strong field gravity (~few Rs)

Probing physics of very strong magnetic fields with X-ray polarimetry

Neutron stars with B ~ 1012 - 1015 G

 Polarisation degree and angle as a function of energy and phase: Gravitational light deflection Emission geometry

Two modes of propagation of photons:
 Ordinary (O) and extraordinary modes (X)

Strong-B field radiative transfer

Signature of strong B-field QED at 1-10 keV: Vacuum polarization-induced mode changes

Black holes and galaxies

 Intermediate mass black holes (M~100-1000 Mo) in regions of intense star formation in nearby galaxies?

 Massive black holes in the nucleus of galaxies:
 Very common
 Only a few active (AGN)

Black hole mass related to galactic bulge properties

- Interplay of black hole and galaxy evolution: AGN activity vs Starbursts, triggered by galaxy encounters?
- 1st generation of very massive stars as black hole seeds
- mass and spin evolution of black holes
- Evolution of "accretion power" and the cosmic X-ray and gamma-ray background

Spectral energy distribution of extragalactic background radiation

Most violent stellar explosions and stellar collapse: Supernovae

- Production and dispersion of metals in intergalactic and interstellar media
- Give birth to neutron stars and black holes
- How do supernovae work?
 Impact on:

Massive star formation and evolution (rotation, metallicity)

ISM feed back

Gamma ray bursts

- X-ray, optical, radio afterglows
- ~1GRB/day in the whole universe
- A very distant class of astronomical objects: very high z in the near future?
- Association to peculiar Supernovae
- Powerful high redshift cosmic beacons, shining through the matter along the line of sight

Galaxies in the age of star-formation

The warm intergalactic medium

Conclusions

- Probing strong field gravity with measurements at a few Rs
- Physics of extreme regimes with compact objects
- Formation and growth of first black holes
- Feedback between black hole growth/activity and galaxy evolution
- Understanding the most violent explosions since the big bang:
 SNe and GRBs