Search for Planets & Life in the Universe

A. Léger

Institut d'Astrophysique Spatiale, CNRS, Orsay

A Great Adventure

1) Giant exoplanets do exist

2) Are there terrestrial exoplanets?

ESO, Sept. 2004

3) - - inhabited

- (primitive life)?

4) Are we alone in the Universe? (Fermi Paradox...)

Goal / Feasibility

- We want to:
 - detect terrestrial planets
 - characterize -
 - search for indication of biological activity
- This is feasible by direct detection of planets
 - study of planetary light
 - -> size
 - -> orbit
 - -> atmospheric composition (spectroscopy)
 - there are reliable biosignatures
 - but not so easy!

Ground or Space?

vision 1950

vision 2004

- Advantage of Space (among others):

full electromagnetic spectrum accessible (e.g. thermal IR)

Spectral range?

- Visible (stellar reflected light) 🔊 large telescope + coronograph + spectrometer
- IR (planetary emission) ১ ম inte

A interferometer nulling the star, + spectrometer

IR	Visible
R _{pl} , T _{eff} , albedo	
CO₂ , H ₂ O , O₃ , CH ₄ , NH ₃ , N ₂ O , SO ₂ ,	O ₂ , H ₂ O , O ₂ , CH ₄
3 x (3m tel.) , 300m base	6m tel.
-> 200 solar type stars	-> 30 solar type sters
European community's choice	

What can be learned?

1) Detection/imaging planetary systems

- · Several observations -> a, e
- Flux(t)
 - √ day/night variations
 - -> no atmosphere
 - √ ~ no day/night variations
 - -> dense atmosphere

Solar System seen by a nulling IR interferometer

2) From spectroscopy (IR):

 T_{eff} , $Flux(\lambda) \rightarrow R_{pl}$, albedo

Flux(λ) -> atmospheric components

Planetary Atmospheres CO₂ Venus H_2O CO₂ Earth CO₂ Mars 10 14 20 λ (μ**m)**

Atmospheric composition

--> allows identification of key gases

Atmospheric composition (2)

Other species (IR)

Planetology

Great diversity expected

Raymond et al., 2004, Léger et al., 2004

Planetology (2)

Composition of a young atmosphere?

- CO₂ level <50 mbar 50-500 mbar >500 mbar
- CH₄, NH₃ reducing atmospheres
- Volcanic SO₂
- NO, NO₂
 produced by lightning and impacts

Planetology (3)

- There are young stars in the 200 star sample, 22 stars younger than 0.5 Gyr e.g. k^1 Ori (1 M_{Sun} , 8.7 pc, ~300 Myrs old)
- At the same age, the Earth had an ocean and an atmosphere.
- -> will help to understand:
 - · the composition of early Earth atmosphere
 - its role in the origins of life on Earth
 - Stars at different ages -> Sun evolution - Planets - - - - - - Earth evolution

Direct detection of planets will provide valuable information for planetology

Life?

✓ What is a bio-marker?

A mixture of gases that cannot be produced in atmospheres, without a local biological activity

```
✓ Good news: - some exist

- that can be remotely detected

(CO_2 + H_2O + O_3), or (CH_4 + O_3), or (N_2O)
```

Interdisciplinary, public outreach

Interdisciplinary

- · Astronomy
- · Planetary/Geo/Atmospheric sciences
- · Chemistry
- Biology

Developed in tight synergy --> reliable evidence of life

Public outreach

- · this vision well understood
- a contribution to stimulate interest of younger generations for sciences

Conclusion (1)

A program:

1) Detecting terrestrial planets:

```
COROT, 2006; (Eddington, 2009?);
Kepler, 2008 (NASA)
```

2) Characterizing planets, (1st generation)

ESA: - IR has been studied for 10 yr

- major **simplifications** of the instrument & improved **capabilities**
- -> 200 target stars

good news: - Darwin is technically feasible and a launch in 2015 is possible

Conclusion (2)

3) Characterizing them (2nd generation)

```
• in IR  \begin{cases} -\lambda/\Delta\lambda \colon & 20 & --> \sim 200 \\ -200 \text{ stars} & --> 2,000 \text{ stars} ? \end{cases}
```

• in Visible: complementary information

4) Next?

An whole new domain in Astronoy and Planetology:

Imaging (minimum 30x30 pixels)

or/and high resolution, high S/N spectroscopy

Europe has the elements to make a real breakthrough, 1st mission, for characterisation, can fly in 2015

Thanks to:

- Jean-Marie Mariotti
- Robin Laurance
- Franck Selsis
- Malcolm Fridlund
- Anders Karlsson
- the ESA "Terrestrial Extrasolar Science Advisory Team"

- atmospheric composition -

 \leftarrow in $T(\lambda)$

--> allows identification of key gases

in F (λ)

