

N. I. Ignatiev^{1, 2}, D. V. Titov^{3,1}, V. Fomisano², E. Lellouch⁴, D. Grassi², M. Tschimmel³, Th. Encrenaz⁴, T. Fouchet⁴, M. Giuranna².

(1) Space Research Institute of Russian Academy of Sciences (IKI RAN), Moscow, Russia,
(2) Istituto di Fisica dello Spazio Interplanetario (INAF-IFSI), Rome, Italy,
(3) Max-Planck-Institut fuer Sonnensystemforschung, Katlenburg-Lindau, Germany,
(4) LESIA, Observatoire de Paris, Meudon, France.

Water vapour in the Martian atmosphere from PFS/Mars express data.

1st Mars Express Science Conference, 21 - 25 February 2005 European Space Research and Technology Centre (ESTEC) Noordwijk, The Netherlands

Original H₂O retrieval technique

Atmospheric water vapour bands in the PFS spectrum

Wavenumber, cm⁻¹

Channel	Band	Status	Note
LWC	20 - 50 µm	ОК	T-profile sensitive.
	6.3 µm	Noise, unusable	Calibrated orbits: up to 683 (Feb 2005).
SWC	2.56 µm	OK ??	More dust sensitive.
	1.87 µm	Noise, distorted	Dayside only.
	1.38 µm	Noise	

Examples of spectrum fitting

SWC picture, orbits 10-538, L_s =330-50°, ppm

Seasonally averaged SWC picture, orbits 10-538, L_s =330-50°, prc. µm scaled to p_s = 6 mb

Seasonally averaged LWC picture, calibrated orbits of 10-612, L_s =330-60°, scaled prc. µm

Disagreement of the LWC & SWC Physics or instrument calibration?

- Calibration (spectrum distortion caused by MEX spacecraft vibrations)?
- > Wrong spectroscopic data, in particular line broadening?
- True difference?

Comparison PFS LW, SW 2.56 & 1.38 μm H_2O band & 1.38 μm in SPICAM AOTF spectra

- See also the today presentations by E. Lellouch, D. Titov, and A. Fedorova
- Such a big difference between 2.56 & 1.38 µm bands can hardly be explained by physical reasons (e.g. by dust optical properties).
- Incorrect spectroscopic data can be partially responsible for the difference.
- LWC is more reliable now, while SW channel requires careful re-calibration for quantitative analysis.
- \succ A very rough correction: a factor of 3.

SWC 2.56 μ m H₂O column scaled by 1/3

Water vapour column abundance (SWC scaled by 1/3) as a function of season and latitude

Summary

- Global picture of water vapour as seen by PFS is close to MAWD & TES.
- PFS LW gives ~ 30% less water that TES (see also talks by E. Lellouch and by A. Fedorova).
- Detailed quantitative analysis requires careful PFS SWC data re-calibration and/or correction of spectroscopic data.
- Complete picture is to be obtained from joint study of PFS, SPICAM AOTF, and OMEGA.