Observations of CO in the atmosphere of Mars With PFS onboard MarsExpress

Billebaud F.(1), Brillet J.(1), Lellouch E.(2), Fouchet T.(2), Encrenaz T.(2), Formisano V.(3), Grassi D.(3), Ignatiev N.(3), Titov D.(4), Giuranna M.(3), Maturilli A.(3), Atreya S(5).

- (1) L3AB Bordeaux, France
- (2) LESIA Paris, France
- (3) IFSI-CNR Roma, Italy
- (4) IKI Moscow, Russia
- (5) U. of Michigan, Ann Harbor, USA

- CO in the atmosphere of Mars comes from photolysis of CO2

-Then is recycled through reactions involving OH

- lifetime >> mixing time

- From a theoretical point of view, CO is not expected to vary much, but...

CO observed several times from the ground in the infrared and mm, always giving a CO mixing ratio in the range:

8 (+ - 3) x 10-4

this is the accepted nominal value

Modest temporal and spatial variations however possible especially as very limited spatial resolution until now ! The SWC detector of PFS allows to observe the (1-0) infrared band of CO near 4.7 microns

Sensitive to q_{CO} and T(z)

Analysis of 63 apodized calibrated orbits (\approx 12000 individual spectra, co-added 4 by 4) ranging from January to May 2004

Focus on the 2000 - 2200 cm-1 wavenumber range

Radiative transfer code inputs:

- spectroscopic data
- instrumental function
- Tsurf, Psurf

- thermal profile, either measured from LW data (Fouchet, Grassi) or from EMCD model (Forget et al.)

performs

synthetic calculations for different values of the CO mixing ratio
least square fit

outputs:

- best CO mixing ratio
- (shift in surface temperature)

Orbit : 275, Spectra : 77 78 79 80, Latitude : 7.5, Mole Fraction(CO)= 0.142E-02, R= 1.10

CO mixing ratio as a function of location

 $Ls \approx 320$ to $\overline{40}$

x 10e-4

CO mixing ratio as a function of latitude

CO mixing ratio as a function of longitude

CO mixing ratio as a function of Ls

20.0 19.3 18.6 17.8 17.2 16.4 15.7 15.1 14.3 13.6 12.8 12.2 11.4 10.7 10.1 9.32 8.66 7.87 7.21 6.55 5.76 4.31

q_{CO}

x 10e-4

90.

Variation with latitude, around $Ls = 0^{\circ}$, if confirmed, could be consistent with seasonal behavior of CO₂, leading to depletion of CO relative to CO₂ at higher latitudes, due to sublimation of CO₂

Conclusions:

q_{CO} values higher than expected !
 (around 12 x 10e-4 on average)
 --> needs confirmation

- possible decrease with latitude for latitudes over 20 degrees (seasonal effect ?)

Next steps:

- work with the instrumental team on the calibration issue to definitely assess absolute values of $q_{\rm CO}$
- process more data to fill the gaps in longitude, Ls, local time...
- use systematic observed T(z) profiles as input
- improve the quality of our q_{CO} distribution with latitude

-90.

20.0 19.3 18.6 17.8 17.216.4 15.7 15.1 14.313.6 12.8 12.211.410. 10. 9.3 8.60 7.8 4.31

x 10e-4

90.