SPICAM on Mars Express: an overview of near IR spectrometer of SPICAM and its

results.

MEX Science Conference at ESTEC, February 23, 2005

O. Korablev^{1,2}, J.L. Bertaux², A. Fedorova¹, A. Kiselev¹, E. Dimarellis², S. Perrier², A. Reberac²

¹ Space Research Institute (IKI), 84/32, Profsouyouznaya, 117810, Moscow, RUSSIA
 ² Service d'Aéronomie, CNRS, B3, 91371, Verrières le Buisson, FRANCE

the SPICAM team

Jean-Loup Bertaux, Oleg Korablev, E. Chassefière, E. Dimarellis, J.P. Dubois, A. Hauchecorne, F. Lefèvre, M. Cabane, P. Rannou, A.C. Levasseur-Regourd, G. Cernogora, E. Quémerais, P.C. Simon, D. Fonteyn, C. Hermans, G. Kockarts, C. Lippens, M. de Maziere, D. Moreau, C. Muller, E. Neefs, D. Nevejans, F. Forget, F. Hourdin, O. Talagrand, A. Rodin, B. Sandel (LPL/USA), A. Stern (SWRI/USA), F. Leblanc, F. Montmessin, O. Witasse, B. Gondet, A. Fedorova, D. Fussen, E. Kyrola, J. Tamminen, S. Lebonnois, Séverine Perrier

the SPICAM AOTF technical team

Yurii Kalinnikov, Alexander Stepanov, E. Van Ransbeeck, A. Kiselev, A. Grigoriev, A. Reberac, S. Guibert

History of the AOTF on MEX

SPICAM/Mars 96 originally consisted of stellar par (15 kg at the platform) and solar part (19 kg). It was not in the model payload of Mars Express 1997 AO: proposed UV spectrometer and IR solar occultation/nadir channel (~10 kg total); after peer review only UV was chosen (5 kg) Descoped IR reproposed for solar occultation only (~2.5 kg) without success. A concept of AOTF Nadir channel (1 kg) proposed 1999: prototype Nadir channel demonstrated and accepted by ESA an add-on to the UV optical block with **no additional mass allowed**

First Acousto Optic Tuneable Filter (AOTF) ever flown in civil space

- Mass inferior to 1 kg (700 g, DC/DC and Solar entry not included)
- Spectral resolution specified as 3.5 cm⁻¹ ($\lambda/\Delta\lambda$ >1300)
- Capable of measuring H₂O in Mars atmosphere similar to MAWD

Acousto Optic Filtration

SPICAM optical scheme

Modes of operation

R channel = 2 detectors (\neq polarization)

- Spectra acquisition in 1, 2 or 3 "windows"
- + dots set (starting frequency, points, step) max points = 3984, max acquisition time = 24s)

normally points = 664-1328, acquisition time = 2-4s

Calibrations

Radiometric calibration

- Done by comparison with OMEGA data and using highresolution solar spectrum
- Wavelength assignment
 - λ versus frequency of the AOTF depends on the crystal temperature
 - Ground calibration done with HgAr pen-ray lamp for temp range -20°+40°C
 - Fitted with $\lambda = a(1+\alpha T)/f + b(1+\beta T)$; α , $\beta \sim 10^{-5}$ K⁻¹ with an accuracy ~0.1 nm within the entire spectral range.
- Resolving power
 - Fitted to the shape of the same pen-ray lamp lines
 - $\lambda/\Delta\lambda$ superior to 1700

Noise Equivalent Brightness and S/N

Basic performances and most used parameters of the AOTF spectrometer

Spectral range	1-1.7 μm
Spectral resolution	0.5-1.32 nm (≈3.5 cm ⁻¹)
Detectors	Two InGaAs Hamamatsu photodiodes for two polarizations
FOV	Ø1° circular
Integration time for 1 spectral point	2.8 ms or 5.6 ms
Data rate	2x332 points per second or per 2 seconds
Length of a spectrum	332 to 3984 points (multiples of 332) Always x2 polarizations
Spectral sampling (frequency step)	 ≈0.25 of resolution element (best sampled) to ≈3 of resolution element (worst undersampled)
Time to measure 1 spectrum	1 to 24 s

Products of near-IR AOTF spectrometer in Nadir

 \otimes Water vapour column (pr. μ m) Equivalent width of $O_2^1 \Delta_g$ emission (in MR) proportional to O_3 column above 15-20 km ♦ Fitting CO₂ absorption at assumed surface pressure \rightarrow aerosol optical depth \otimes Reflectance in the spectral range of 1-1.6 μ m ♦ Equivalent width of CO_2 ice absorption → CO_2 ice detection (on the surface or in clouds) Equivalent width of H₂O ice absorption H₂O ice detection

Ice signatures: CO₂ and H₂O

MARS EXPRESS SPICAM/AOTF

SOUTH POLE ORBIT 30

Albedoe in the range 1-1.7 μm

Conclusions and plans for future

- On Mars Express SPICAM IR is to large extent duplicative to such instruments as OMEGA and PFS
- This channel proved to be capable of measuring :
 - water vapour with an accuracy of 1-2 pr.μm
 - ozone through $O_2^{1}\Delta_q$ emission
- We plan also to implement
 - routine measurements CO₂ and H₂O ices
 - aerosols at limb,
 - Possibly, retrieve aerosol in Nadir
 - And to analyze in detail Solar Occultations (already performed)

For the future:

- AOTF sensor is below 1-kg threshold. S/N of SPICAM IR AOTF derivative for Venus Express has been largely improved
- We believe that this type of instrument should be a routine versatile aeronomy-climate sensor in any future Mars missions