Spatially Resolved UV albedo of PHOBOS with SPICAM on Mars Express

Séverine Perrier⁽¹⁾, J.L. Bertaux⁽¹⁾, O.Korablev⁽²⁾, A. Fedorova⁽²⁾, A.C.Levasseur-Regourd⁽¹⁾, S.A. Stern⁽³⁾

(1) Service d'Aéronomie du CNRS, Verrières-le-Buisson, France

(2) IKI, Moscow, Russia

(3) Southwest Research Institute, Boulder, USA

The SPICAM team on Mars Express (MEX)

Jean-Loup Bertaux(1)(PI), O. Korablev(2), D. Fonteyn(3), E. Chassefière(1), E. Dimarellis(1), J.P. Dubois(1), , S. Perrier(1), A. Reberac (1), A. Hauchecorne(1), F. Lefèvre, A.C. Levasseur-Regourd(1), G. Cernogora(1), M. Cabane(1), P. Rannou(1), E. Quémerais(1), C. Hermans(1), G. Kockarts(1), C. Lippens(1), M. De Maziere(1), D. Moreau(1), C. Muller(1), E. Neefs(1), D. Nevejans, P.C. Simon(1), F. Forget(4), F. Hourdin(4), O. Talagrand(4), V.I. Moroz(2), A. Rodin(2),B. Sandel(5),A. Stern(6), F.Leblanc(1), F.Montmessin(1,7),O.Witasse(8), B.Gondet(9), A.Federova(2), D.Fussen(3), E.Kyrola(10), J. Tamminen(10), S. Lebonnois(4)

1 .Service d'Aéronomie du CNRS/IPSL, BP.3, 91371, Verrières-le-Buisson, France

- 2. Space Research Institute (IKI), 84/32 Profsoyuznaya, 117810 Moscow, Russia
- 3. Belgian Institute for Space Aeronomy, 3 av. Circulaire, B-1180 Brussels, Belgium
- 4. Laboratoire de Météorologie Dynamique/IPSL, Université Paris 6, 75252, Paris, France

5.Lunar and Planetary Laboratory, 1541 E.University Boulevard, Univ.of Arizona ,Tucson, AZ 85721, USA

6 SouthWest Research Institute, Boulder, CO 80302, Colorado, USA

7. NASA Ames Research Center, Moffett Field, CA 94035-1000,

8. ESTEC/SCI-SR postbus 299, 2200 AG Noordwijk, NL, Europe

9. Institut d'Astrophysique Spatiale, Orsay Campus, 91405, France

10. Finnish Meteorological Institute, P.O. Box 503 Fin-00101 Helsinki, Finland

Phobos

- orbital radius : 9378 km (from Mars center)
- diameter : 22.2 km (27 x 27.6 x 18.8 km)
- mass : $1.08 \times 10^{16} \text{ kg}$

SPICAM / MEX observations of Phobos

- Analysis of scattered UV solar light between 110 and 310 nm
 - Phobos reflectance (albedo) spectrum
 - Search for spectral / spatial variations of albedo

SPICAM integration time : 320 msec

About 40 spectra during an encounter

> HRSC image Orbit # 756 22 August 2004 distance=150km

SPICAM / MEX observations of Phobos

Orbit Number	Duration of Phobos obs.	Distance Phobos-S/C	Phase angle (°)	Band FOV (km)
	(sec)	(km)		
413	6	1895	42.5	5.8
682	6	1480	64.7	4.6
715	8	1224	40.0	3.8
748	8	1257	22.2	3.9
756	9	162	61.5	0.5
1010	10	9351	132.3	28,7
1064	9	4685	70.4	14.5
1163	8	3840	58	36.5

Photometric time profile : example on orbit 756

Mean intensity between 150 and 300 nm as a function of time, for each band

Spatial variations ?

- Orbit 756 (closest encounter, 162 km, FOV = $0.5 \times 0.7 \text{ km}$)
- 40 spectra overplotted (normalized to the brightest)

=> no significant spatial variations on Phobos in the UV

Phobos spectrum vs solar spectrum

- Solar spectrum from SOLSPEC (Thuillier et al., 2004) multiplied by SPICAM effective aera
- Computation of the radiance factor I/F

Spicam sensitivity

normalisation to the brightest

superposed spectra

 $\alpha = 40^{\circ}$

normalisation to the brightest

superposed spectra

orbit 748

α=22.2°

300

0.02

0.015

0.01

 5×10^{-3}

C

200

Rf

250

Wavelength (nm)

normalisation to the brightest

superposed spectra

The different Phobos observations with SPICAM

Phobos UV albedo

Average spectrum of Phobos over all observations

• Calibration on the brightest spectrum observed => a good approch to the geometric albedo

• Several absorption features between 200 and 300 nm

Phobos UV albedo : total error

 We take into account systematic errors 3% on the SOLSPEC solar spectrum 10% over the SPICAM sensitivity

- Above 280 nm, absorption not real
- Absoption feature at 270 nm : possible but not certain
- The absorption feature F1 at 220 nm seems to be real !

Comparison with previous measurements

- Mariner 9 data (1971-1972) (Pang et al. 1978)
- HST data (Cantor et al. 1999)

Origin of Phobos surface material

- Mars (?)
- Phobos bulk
- Interplanetary dust
 - Asteroid source
 - Cometary source
- Interstellar dust (minor)

Speculation about the origin of Phobos UV absorption at 220 nm

- Not compatible with UV silicate signature (around 260 nm) (Hapke, 2004)
- Phobos absorption similar to the extinction feature observed in the Interstellar Medium at 217.5 nm
- Nature of ISM absorbing material ? possible organic material : PAH (*Duley and Lazarev, ApJ 2004*) from laboratory measurements C₂₄H_{x, ,}, x<3

Compared UV sensitivity of SPICAM/MEX and IUE

- IUE : UV albedo of 45 asteroids, $\lambda > 240$ nm (Roettger and Buratti, 1994)
- high-sensitivity of SPICAM between 200 and 300 nm

Conclusions : PHOBOS UV SPECTRUM

- Obtained over a larger UV spectral range than before
- Spatially resolved
- No strong spatial variations on Phobos
- Significant absorption feature around 220 nm, similar to the interstellar extinction feature.
- Could be caused by the presence on Phobos of organic material (either from Phobos or from an external source)

SPICAM / MEX observations of Deimos

- orbital radius : 23 459 km (from Mars center)
- Deimos diameter : 12.6 km
 - mass : $1.8 \times 10^{15} \text{ kg}$

Orbit Number	Duration of Phobos obs. (sec)	Distance Phobos-S/C (km)	Phase angle (°)	Band FOV (km)
756	9	162	61.5	0.5
1222	9	11 852	45.6	36.5

superposed spectra

normalisation to the brightest

Comparison Deimos spectrum vs Phobos spectrum

Influence of the efficient surface curve over the albedo

• If the « hole » in the efficient surface at 220 nm wasn't real ?

• The absorption band at 210 nm is always here !

Light curves : example on orbit 756

• Mean intensity between 150 and 300 nm as a function of time, for each band

Lyman α

Comparison with previous measurements

- Mariner 9 data (1971-1972) (Pang et al. 1978)
- HST data (Cantor et al. 1999)

1.0 to 1.7 μ m, $\lambda/\delta\lambda$ =1600, AOTF spectrometer,0.8 kg 110-310 nm, $\lambda/\delta\lambda$ =150, grating imaging spectrometer

Comparison with previous measurements

• Mariner 9 data (1971-1972)

Origine of this absorption?

- Duley : MIS absorption feature at 2175 nm
- Possible PAH or silicates
- model

