
Mars Reconnaissance Orbiter (MRO)

Robotic Mars Exploration

Mars Reconnaissance Orbiter (MRO)

Project Overview

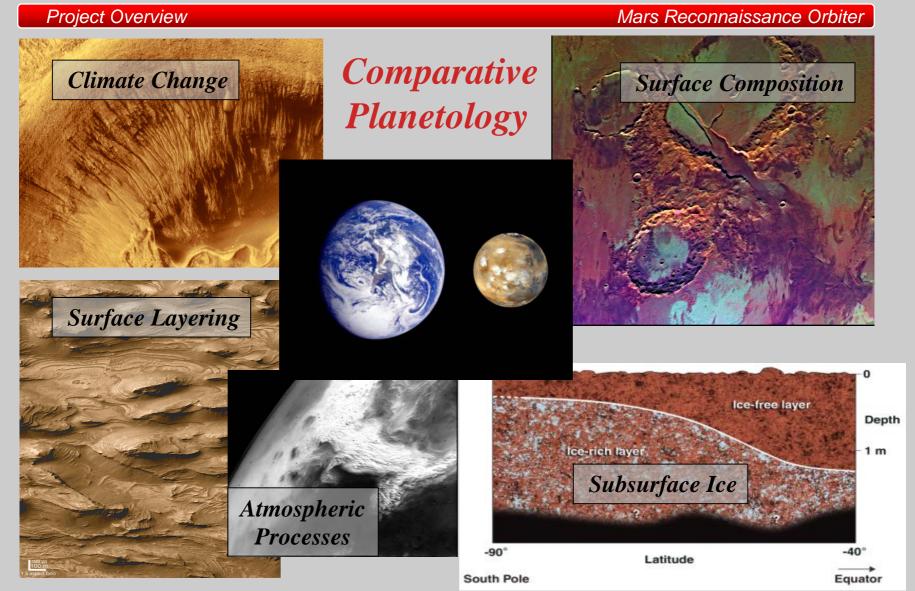
Mars Reconnaissance Orbiter

Salient Features

- 4 Earth years in Mars orbit (near polar, 3 p.m., 255 x 320 km)
 - 2 years science observations plus relay support
 - 2 years relay mode with capability to extend science operations
- **International Science Payload:**
 - Meter- scale (30 cm/pixel) and context (6 m/pixel) imaging
 - Hyperspectral (~20 m/pixel, 10 wn) compositional mapping m/pixel)
 - Atmospheric profiling and weather monitoring
 - Radar probing of the near-subsurface; gravity science
- Relay Telecom Payload + Optical Navigation & Ka-Band Experiments
- Launch: August 2005; Arrive: March '06; Aerobrake: Mar.- Oct '06; Mission End: Dec., 2010

MGS

Science


- Characterize Mars' seasonal cycles and daily variations of water, dust & carbon dioxide.
- Characterize Mars' global atmospheric structure, transport and surface changes.
- Search sites for evidence of aqueous and/or hydrothermal activity.
- Characterize in detail the stratigraphy, geology & composition of Mars surface features.
- Characterize the Martian ice caps and the polar layered terrains.
- Profile the upper crust while probing for subsurface water and ground ice.
- Characterize the Martian gravity field and upper atmosphere in greater detail.
- Identify and characterize many sites for future landed missions.

Mars: A Complex Planet

Science Mission Implementation

Project Overview

Mars Reconnaissance Orbiter

Observe at Many Wavelengths

Observe at much Higher Spatial Resolution

Payload Selection

MARCI: UV - VIS imaging

MCS: Thermal IR Profiling, VIS

CTX, HiRISE: Visible imaging

CRISM: VIS - Near IR (544 channels)

SHARAD: Shallow Sounding Radar

(15 m wavelength [free-space])

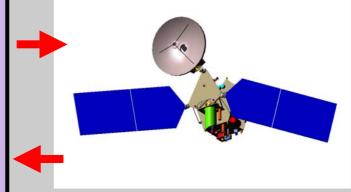
HiRISE: 0.3 m/pixel visible imaging

CTX: 6 m/pixel visible context imaging

CRISM: 20 m/pixel spectral imaging

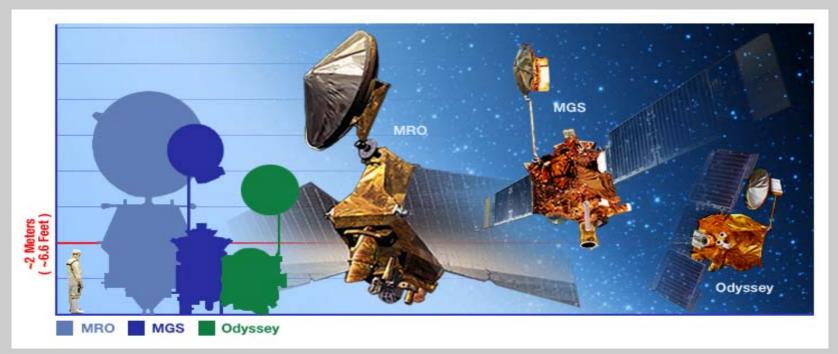
MCS: 6 km vertical profiling of atmosphere

MARCI: Daily global weather monitoring

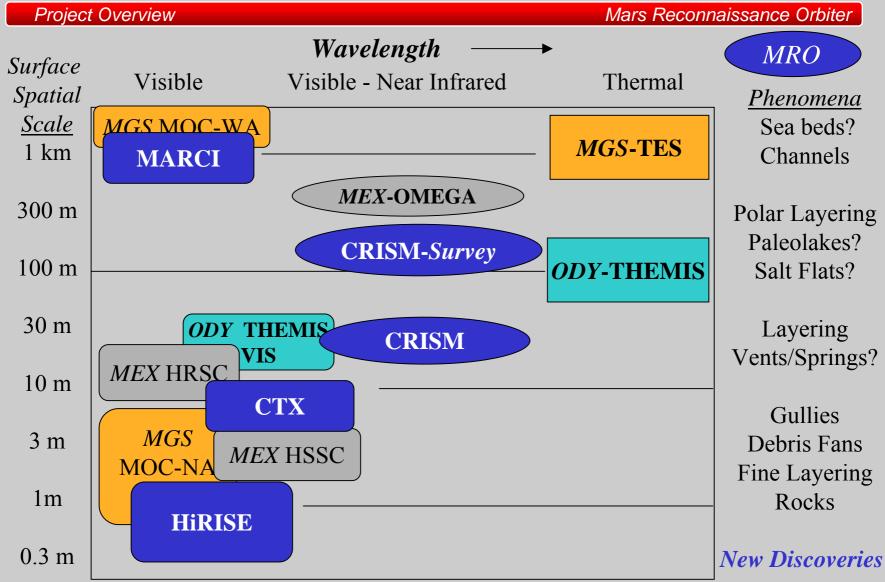

SHARAD: ~ 10-m vert. resoln. to 0.5 km depth

Mission Design

- Investigate Multiple Scientific Disciplines
 - Climate, Geology, Meteorology, Geoscience
 - Atmosphere, Surface, Polar Caps, Subsurface
- Conduct Diverse Observation Modes:
 - Global Monitoring for 1 Mars Year
 - Regional Survey
 - Site Targeting with Precision



Mars Spacecraft Comparison


Project Overview

Item	MRO	MGS	Odyssey
Launch Year	2005	1996	2001
S/C Wet Mass (kg)	2180	1055	733
Science Orbit (km)	255X320	400	400
Ground Sampling (m		1.5	18
Data volume (Gb/sol) 20-90 *	0.7	1

Relation to Other Mars Missions for Imaging

Data Return Comparison

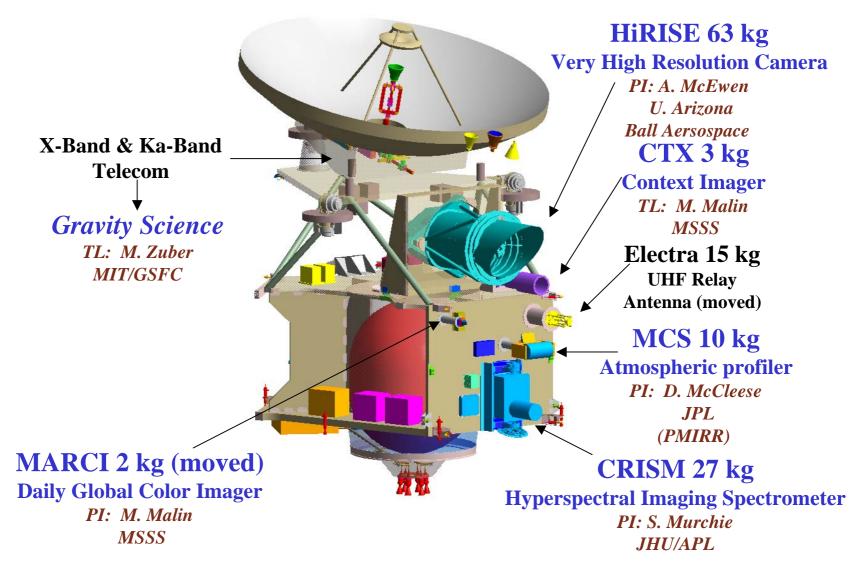
Mars Reconnaissance Orbiter Project Overview Mars Reconnaissance Orbiter (MRO) plans to return over 3 times as much data as five missions put together. **MRO** 34 **Terabits** 26 **Terabits** required by NASA Magellan Cassini (Venus) MGS (Saturn) Odyssey DS₁ (Mars) 3740 (Mars) (Comets) 2550 **Gigibits** 1759 **Gigibits** 1012 15 **Gigibits Gigibits Gigibits**

MRO Science Investigations (1 of 2)

Project Overview

Instrument	Туре	PI/TL, Institution	Science Goals	Attributes
CRISM	Compact Reconnaissance Imaging Spectrometer for Mars	Scott Murchie. PI Johns Hopkins University Applied Physics Lab Selected thru MRO -2005 AO	Regional & Local Surface Composition; Atmospheric Properties	High Spectral & Spatial Resolution Targeted & Regional Survey Very High Data Rate
CTX	Context Imager	Michael Malin, TL Malin Space Science Systems (MSSS) Facility Instrument Replaces MCO MARCI-MAC	Regional Stratigraphy and Morphology	High Resolution with Coverage Targeted & Regional Survey High Data Rate
HiRISE	High- Resolution Imaging Science Experiment	Alfred McEwen, PI University of Arizona Selected thru MRO-2005 AO	Stratigraphy, Processes, Site Morphology	Very High Resolution Targeted Imaging Very High Data Rate
SHARAD	Shallow Subsurface RADAR	Roberto Seu, TL/PI University of Rome Roger Phillips, DTL NASA-ASI Selection	Regional Near-Surface Ground Structure	Shallow Radar Sounding Regional Profiling High Data Rate

MRO Science Investigations (2 of 2)


Project Overview

Instrument	Туре	PI/TL Institution	Science Goals	Attributes
MARCI	Mars Color Imager	Michael Malin, PI Malin Space Science Systems Recover MCO MARCI-WAC	Global Weather and Surface Change	Daily Global Coverage Daily,Global Mapping Moderate Data Rate
MCS	Mars Climate Sounder	Daniel J. McCleese, PI Jet Propulsion Laboratory California Institute of Technology Recover MCO PMIRR Science	Atmospheric Fields, Transport & Polar Processes	Global Atmospheric Limb Sounding Daily,Global Limb & On-Planet Mapping; Low-Data Rate
Gravity Science	Facility Science Team Investigation	Maria Zuber, TL MIT / GSFC Selected thru MRO-2005 AO	Improved Gravity Field Model; transient Mass Change	Data from DSN tracking using Spacecraft X & Ka Band Telecom
Atmospheric Structure (ACCEL)	Facility Science Team Investigation	Gerald Keating, TL GWU/LaRC Selected thru MRO-2005 AO	Upper Atmospheric Structure & Variability; A/B Support	Data from Spacecraft Accelerometers during Aerobraking
Future	Participating Scientists & Guest Observers may be selected and funded as part of a future Announcement of Opportunity or Research Announcement			

Payloads (1 of 2)

Project Overview

Payloads (2 of 2)

Project Overview

Mars Reconnaissance Orbiter

MRO

Current Status

Project Overview

- Finished Vibration Tests
- Preparing for System Thermal/ Vacuum Testing in February
- EM Compatibility Test in March
- Now onboard:
 - MARCI, MCS, CTX, HiRISE
 - SHARAD Electronics & Antenna
 - Opt-Nav Camera not visible in this view
 - Electra with UHF Antenna
 - CRISM re-delivered & integrated after this picture was taken

Near-Term Schedule (2005)

NASA

Project Overview

Mars Reconnaissance Orbiter

Orbiter (s/c + instruments) have finished vibration & shock tests **Key Dates of Coming Attractions**

Key Dates of Coming Attractions

• System Thermal/Vacuum Test (STV) Feb 10 - 24

• EMI Compatibility Tests March 4

• Pre-Ship Review: March 30

• Ship to Cape: April 26

• Launch Window: August 10 - 31

• MARCI Calibration L+3 (August)

• TCM-1 L+14 (Aug-Sept)

HiRISE & CTX Lunar Calibration
 Sept. 28

February 2, 2005: ~ 6 months (190 days) to Launch Window

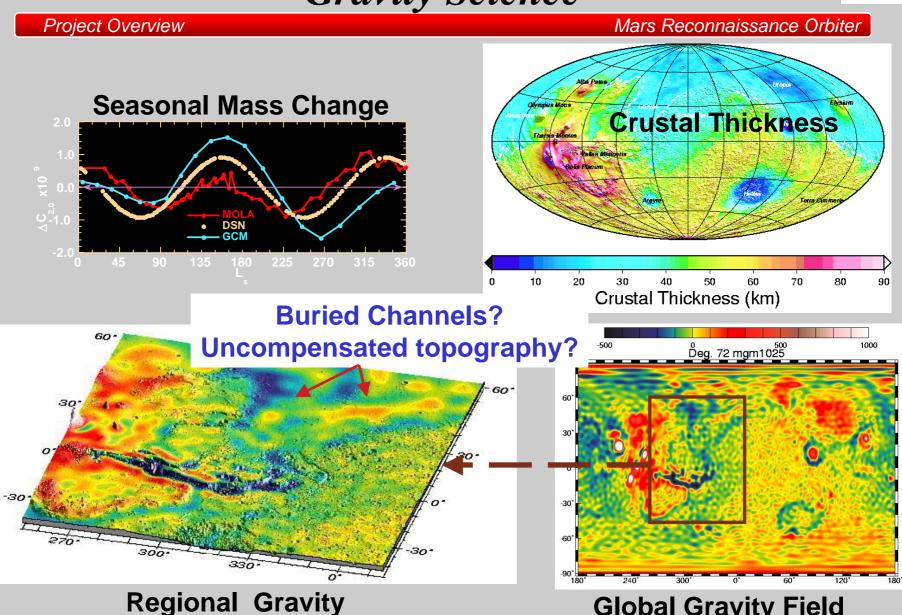
~ 13 months to MOI & start of aerobraking

Payload Status

Project Overview

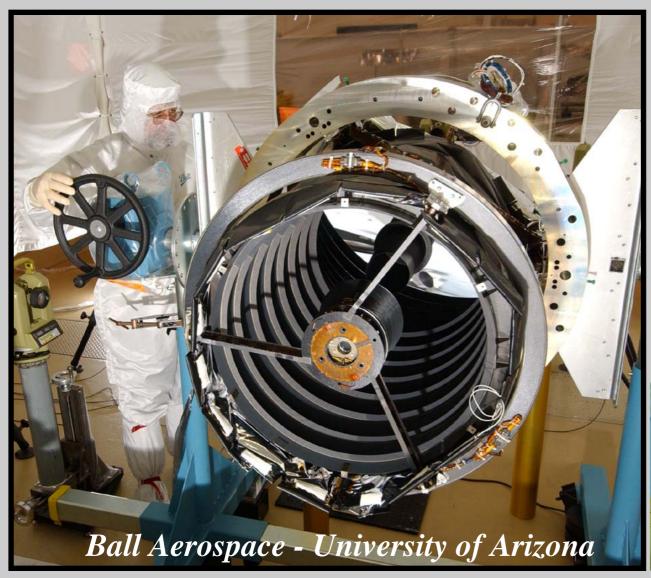
Mars Reconnaissance Orbiter

All instruments are on the spacecraft!

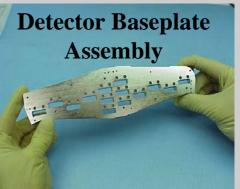

- All instruments meeting their individual science requirements in terms of spatial resolution, signal-to-noise, spectral resolution, wavelength range, etc.
 - Known "features" are judged acceptable, although they will require additional effort (e.g., in calibration) to produce data products ≥ Level 1

Issues being worked:

- HiRISE will reload its Focal Plane Electronics Software to improve timing margins and stability of imaging performance (this week)
- Looking to characterize and reduce Electromagnetic Interference (EMI) between payload elements (MCS, CTX, CRISM) and Electra (UHF relay)
 - Conduct EM compatability test after STV (late Feb.)
- Looking to characterize and reduce jitter between MCS and other payload elements and to verify compliance by spacecraft subsystems (e.g., gimbals)
 - Jitter test has been run & data are being analyzed
 - Potential MCS jitter mitigations being evaluated
- Will remove SHARAD Antenna to fix small cracks on root hinge



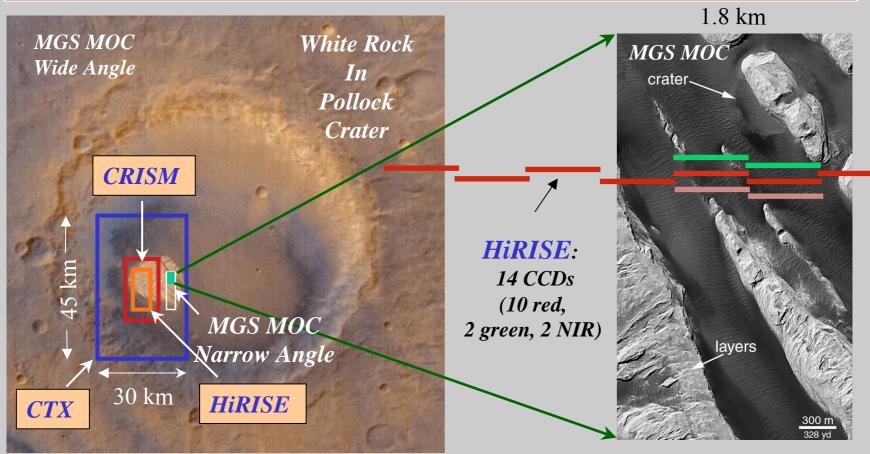
Global Gravity Field MRO February 24, 2005 rss-16


HiRISE Flight Telescope

Overall Length ~ 1.5 m

Overall Diameter ~ 0.75 m

Primary Mirror 0.5 m

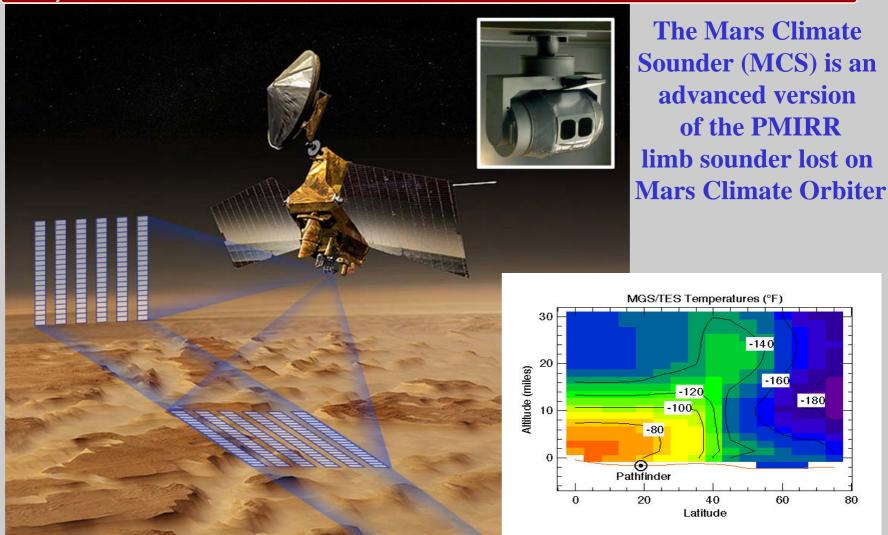


MRO Coordinated Observations

NASA

Project Overview

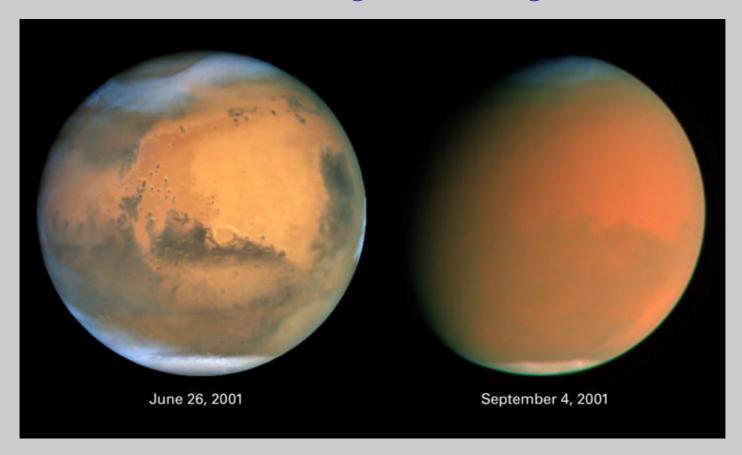
Mars Reconnaissance Orbiter


Nested Coverage Provides Context High Resolution Provides Detail

IMAGES from NASA/JPL/MSSS

Limb Staring Geometry for MCS

Project Overview

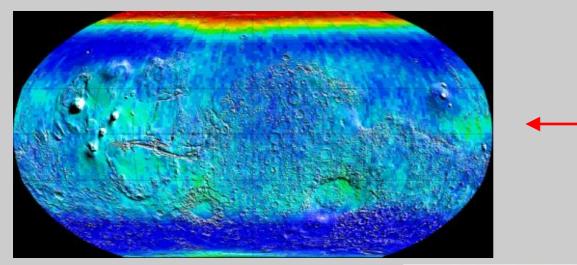

Which Mars Will MRO Encounter?

Project Overview

Mars Reconnaissance Orbiter

MARCI will extend global coverage in time

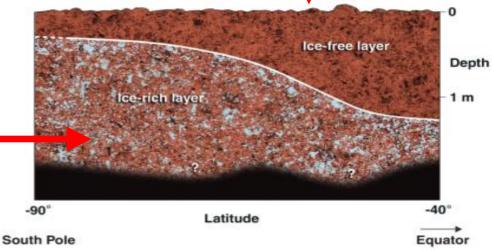
CREDIT: NASA / STScI / AURA / J. Bell & M. Wolff


Phoenix and MRO

NASA

Project Overview

- Need site observations as early in the MRO Primary Science Phase (PSP) as possible to capture seasonal environment and to provide maximum time for PHX to analyze MRO data
 - Will consider earlier atmospheric observations to test EDL simulations once aerobraking is completed
 - Burden of analyzing MRO data falls on PHX
- Support PHX critical EDL and initial surface ops events
 - Atmospheric monitoring during PHX approach
 - Relay during critical events
 - Change phasing in orbital plane, but not inclination (& LMST)
- Continue MRO observations during the PSP
 - Minimize EMI interferences so MRO can meet its twin Level 1 requirements of science mission success and relay
- Coordinate MRO & PHX science campaigns


SHARAD: Probing the Subsurface

Hydrogen (Ice) Map
2001 Mars Odyssey
GRS-Neutron
Spectrometer
& HEND

NASA / JPL / University of Arizona & Los Alamos National Laboratory

How Deep is this Layer?
Is it in Equilibrium with
Today's Climate?
Is it the Top of the Ancient
Water Reservoir?

