

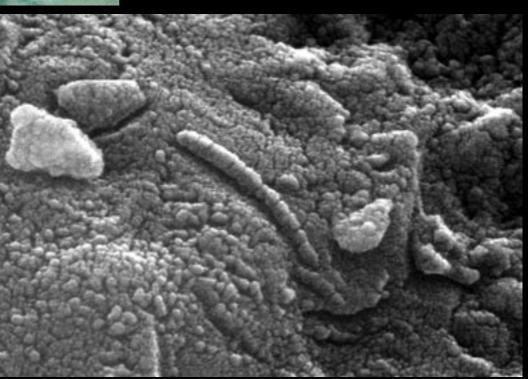
BBC News - Last Updated: Monday, 21 February, 2005, 18:07 GMT

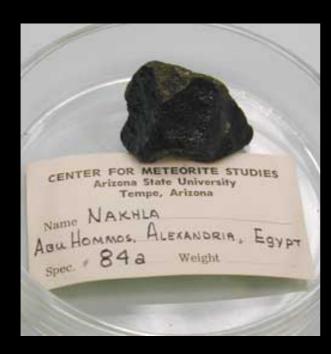
A huge, frozen sea lies just below the surface of Mars, a team of European scientists has announced.

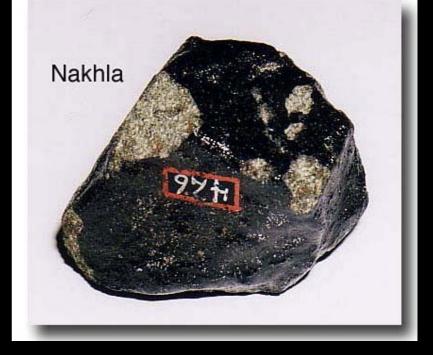
Their assessment is based on pictures of the planet's near-equatorial Elysium region that show plated and rutted features across an area 800 by 900km.

The team think a catastrophic event flooded the landscape five million years ago and then froze out.

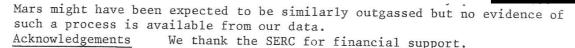
"What we'd like is for the European Space Agency (Esa), with UK support, to send its next lander there" Jan-Peter Muller, University College London

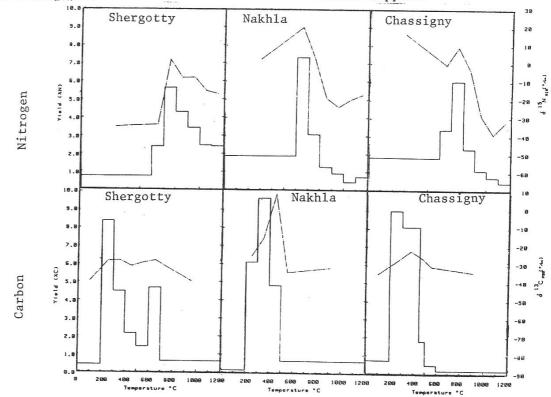


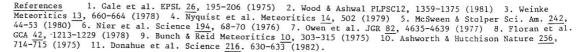



ALH 84001

- PSSR Astronomical Research d ace SAR
- Collected in 1984
- Igneous rock
- Wrongly classified (diogenite)
- Crystallisation age of 4.5 Gy
- Left Mars 16 My ago
- Arrived on Earth 13,000 y ago
- First substantive paper claimed that carbonates were high-temperature (1993)
- Carbonates demonstrated to be of lowtemperature origin deposited by fluids (1994)
- McKay et al. (1996)




LUNAR PLANET. SCI. XIV (1983


NO UNUSUAL COMPOSITIONS OF THE STABLE ISOTOPES OF NITROGEN, CARBON AND HYDROGEN IN SNC METEORITES. A.E. Fallick^{*}, R.W. Hinton, D.P. Mattey, S.J. Norris, C.T. Pillinger, P.K. Swart and I.P. Wright. Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, U.K. and *S.U.R.R.C., East Kilbride, Glasgow G75 OQU.

Traditionally: Chassigny have been Shergottites (4 men More recently, thes meteorites on the t rites are highly di are very similar to es) and pyroxenites meteorites is their 1.31 Gy (1,2).

In order to ex formed near the sur planet Mars. Subse suitable candidate idea of a Martian o lines of evidence a The possibilit ing opportunities f mechanism (unknorm)

& Astronomical Research Space Planetary, Earth, entr

The Open University

PSSRI

183

Space & Astronomical Research

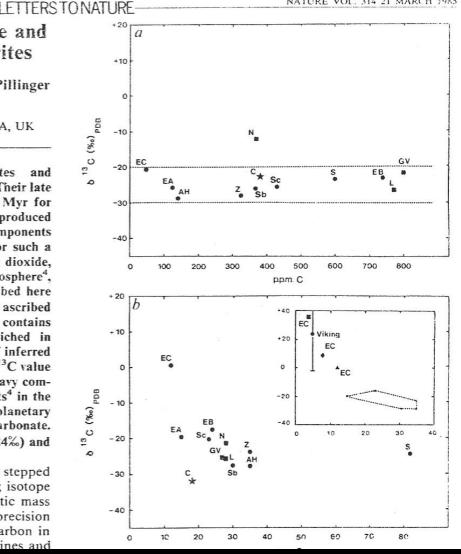
Planetary,

Earth,

20

entre

1.18


Martian atmospheric carbon dioxide and weathering products in SNC meteorites

R. H. Carr, M. M. Grady, I. P. Wright & C. T. Pillinger

Planetary Sciences Unit, Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

SNC meteorites-four shergottites, three nakhlites and Chassigny-are postulated to have originated on Mars¹. Their late crystallization ages (<1,300 Myr compared with 4,600 Myr for other igneous meteorites) and the presence, in shock-produced glass in EETA79001, of noble gas² and nitrogen³ components resembling the martian atmosphere provide evidence for such a provenance. If this interpretation is correct then carbon dioxide, by far the most abundant constituent of the martian atmosphere⁴, should also be present. The stepped combustions described here show that most of the carbon present in the samples can be ascribed to terrestrial contamination. EETA79001, however, contains 4.6 p.p.m. of an isotopically distinct component enriched in $^{13}C(\delta^{13}C = +36\%)$, whereas high-temperature carbon of inferred igneous origin in this meteorite and other SNCs has a δ^{13} C value of about -30%. The ¹²C/¹³C ratio of the isotopically heavy component is within the error limits of Viking measurements⁴ in the martian atmosphere and, thus, strengthens the case for a planetary origin. Another carbon-containing species, believed to be carbonate. has been found in Nakhla ($\delta^{13}C$ = between +12 and +24%) and may be a product of atmospheric weathering on Mars.

Analyses of SNC meteorites were performed using a stepped combustion technique, similar to that of Swart et al.5; isotope measurements were made using a high-sensitivity static mass spectrometer capable of determining δ^{13} C values to a precision of $\pm 3\%$ or better on samples as small as 6×10^{-9} g carbon in the form of carbon dioxide (R.H.C., L.P.W., A. W. Joines and

Organic Cosmochemistry

- High-Performance Liquid Chromatograph (HPLC)
- Gas Chromatograph Mass Spectrometer (GC-MS)
- Gas Chromatograph Isotope ratio Mass Spectrometer (GC-IRMS)
- Dual-inlet Isotope Ratio Mass Spectrometer (IRMS)
- Thermo-Gravimetric Evolved Gas Analyser (TG-EGA)
- C,H,N Elemental Analyser
- Pyroprobe
- Hydrous Pyrolysis
- Supercritical Fluid Extraction (SFE)
- Preparation Suite (6 fume-cupboards, organically clean laboratory)

Other Facilities

- Several stable isotope ratio mass spectrometers, extraction systems, laser probes, chemical preparative laboratories, and support equipment
- High sensitivity carbon stable isotope ratio mass spectrometer (MS86)
- High sensitivity nitrogen stable isotope ratio mass spectrometer (Finesse)

Astronomical Research đ pace

PSSRI

And what is a 'black shale' ?

Astronomical Research

ace &

PSA

(from www.blackshale.com)

According to the Dictionary of Science and Technology:"A thinly bedded shale that is rich in carbon, sulfide, and organic material; formed by anaerobic decay of organic matter."

According to the Glossary of Geology (4th ed.):

A dark, thinly laminated carbonaceous shale, exceptionally rich in organic matter (5% or more carbon content) and sulfide (esp. iron sulfide, usually pyrite), and more commonly containing unusual concentrations of certain trace elements (U, V, Cu, Ni). Fossil organisms (principally planktonic and nektonic forms) are commonly preserved as a graphitic or carbonaceous film or as pyrite replacements. Syn.: biopelite (...)

Stepped Combustion Data from ALH 84001,106 40 100 36 ppm C (+15%₆) 20 10 Organics Ø $\delta^{13}C$ [**C**] Carbonate (**ppm** [•]C^{·1})¹ (‰) -20 0.1 -40 System Blank 0.01 200 1200 400 600 800 1000 Ô **TEMPERATURE (°C)**

Space & Astronomical Research Earth, Planetary, Centre for

CORDIS News

ESA prepares for mission to Mars [Date: 2004-02-24]

- Undeterred by the apparent failure of the UK's Mars probe Beagle2, the European Space Agency (ESA) is looking ahead to 2009, the date foreseen for the launch of the ExoMars rover and its Pasteur payload of scientific instruments.
- 'Our intention is to define a multi-instrument package that will be able to fulfil a number of key tasks,' said Jorge Vago, a scientist working on ExoMars. 'It should be able to drill into the surface, retrieve and analyse samples, study the physical environment and look for evidence of biomarkers clear signs that life has existed on Mars in the past, or even survives to the present day.'

Earth, Planetary, Space & Astronomical Research Centre for

Pasteur Possible set of instruments

	Sc o pe	Heri tage	M ass
Drill	Soi Î sample ac quisiti on at 1.5 m depth	Ro setta (bu t m ore com plex)	11 kg (w ith 2 d.o.f. manip ulator)
	Ĩ		1 /
SPHS	Pre par e sam ples for meas ur em en t, an d d is trib ut e t he m to specific diagno st ics	ESA Phas e Ast udies outp ut	5 kg (with milling and processin g unit s)
P a nCam	Vi ewin g, colou r pictures. On mast 1.5 m abov e surface, can rotat e and ti lt	MER R ov er (N ASA)	2 kg (excl. mast)
Optical Colour Microscope	Id en tify struct ur es chara cteristic of biological activit y	MECA (Beagl e 2)	0.5 kg
Subsurface Electromagnetic Sounder	Subsu rface water detection. At tac hed to drill system p latform.	[M ars Top ica l T eam]	1.5 kg
R a man S pe ctr o me ter/L PS	Comp are spectrum with those of known lab or at ory sam ples/Det ermine element ary atom ic compo sition of sample	[ES A G S T P]	1.5 kg
Ox i-GC/MS	Determin et he compo sition and abun danc e of vola tile or vola tilisabl e componen ts	COSAC (R ose tta)	7.5 kg
Life Marker Chip	Compare residue s with known organic compounds	[ne w de vel opment]	3 kg

E uroa via Š Von Karma n Institu te Scientifica nd Ed ucati ona l S ym po sium M ISSION TO MA RS 5/1 1/200 2, Si nt -Gene siu s-Rh o de

Astronomical Research

đ

space

Aurora - Mixed Messages

- Put humans on Mars
- Develop a mechanical robot, capable of travelling 100 km
- Return samples of Mars to Earth
- Discover life

Scientific Campaign for the Investigation of Mars

- Let's do things that others are not doing
- Let's do things that interest European scientists
- Let's remain realistic about the route towards understanding the workings of another world
- Should be part of ESA's Cosmic Vision

& Astronomical Research

space

Planetary,

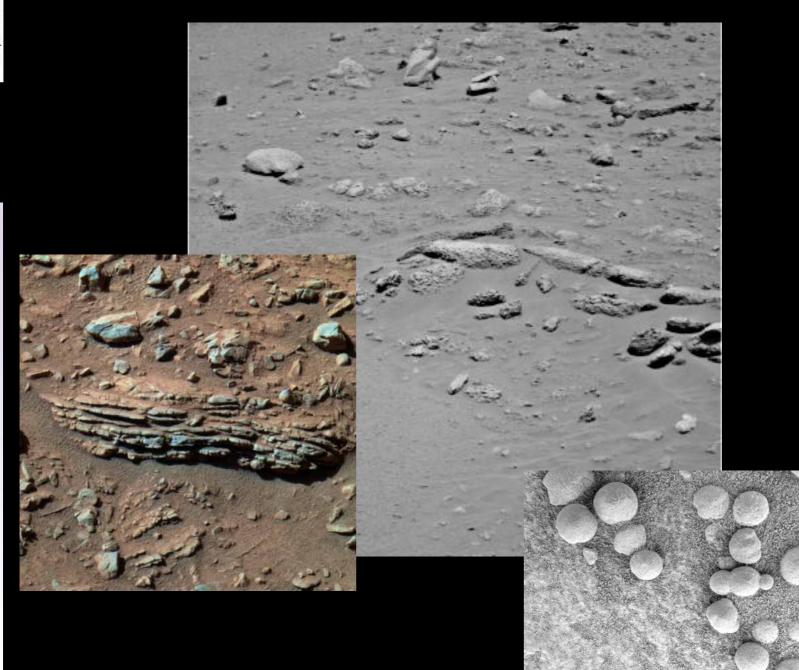
entre

SAR

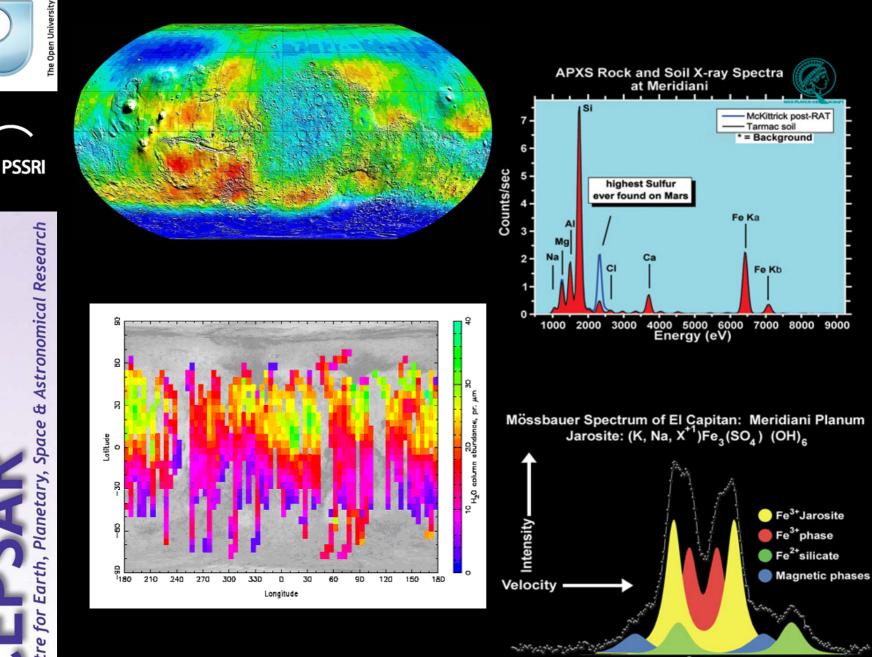
Exobiology and geochemical science on the surface of Mars

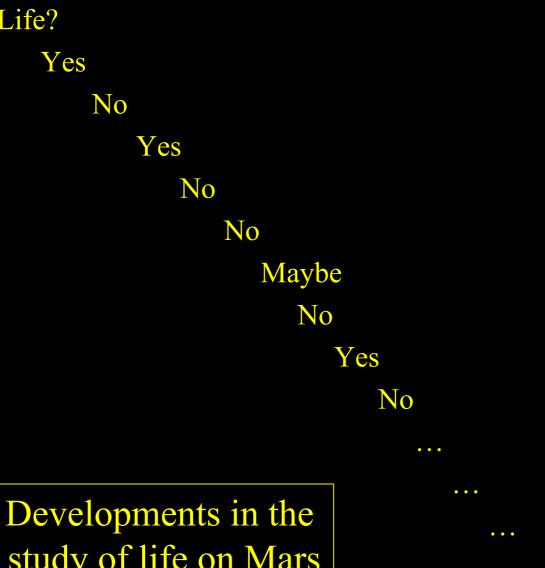
copyright: ESA/DLR/FU Berlin (G. Neukum)

Mars - what's new?



Mars - what's new?


- Trace atmospheric gases methane, formaldehyde
- Sulfur-bearing minerals and rocks jarosite, epsomite
- Sedimentary rocks evidence from layering and other morphological features
- Relatively recent fluid-related activity



1700-1800

The Enlightenment Chemistry Mendel - birth of genetics Darwin, "On the origin of species..." Shrodinger, "What is life?" Crick and Watson (etc.), structure of DNA Miller-Urey synthesis Discovery of Homo habilis Genetic Engineering Human Genome Project Artificial life (Los Alamos Bug, Developments in the Minimal Cell Project) study of life on Earth **Present Day**

Astronomical Research đ space Planetary entr

What do we know about Carbon on Mars?

Atmosphere:

CO₂ (96%), CH₄, CH₂O (ppm-ppb)

Surface (inorganic):

Spectral signature of carbonate ("trace amounts in dust", "don't see massive regional concentrations")

Surface (organic):

No organic compounds at the surface (Viking)

Martian meteorites:

Many details (organics, carbonates, trapped gases, but issues of contamination and, in some quarters, pathological failure to accept they come from Mars)

Astronomical Research đ space Planetary

Mars - our scientific destiny

"Follow the water" NASA (USA)

So, why not set our sights on understanding the carbon cycle on Mars

> No carbon cycle = no life No life \neq no carbon cycle There *is* a carbon cycle on Mars

"Capture the carbon cycle" ESA (Europe)

[capture - "succeed in representing or describing (something elusive)"]

PSSR

Space & Astronomical Research

enti

4

Capturing the Carbon Cycle

Problems to bear in mind:

- Need to understand how carbon partitions between the different reservoirs and what levels of activity
 - ppm-ppb concentrations of atmospheric gases (a more difficult analytical challenge than on Earth)
 - Detection of amino acids (so what? present in carbonaceous chondrites)
 - Detection of proteins, DNA, RNA (how do you distinguish the effects of terrestrial, biological contamination?)
 - Should look for organic compounds in samples that are most relevant to the effects of fluid-related activity (epsomite!)