

On the feasibility of a fast track return to Mars

Mars Lander(s) 2011 Mars Demonstration Landers (MDL)

Technology Demonstrators

What are the descent options?

- 1. Passive Descent: Parachute System with Airbags on Landing (High risk and applicable only to Mars)
- 2. <u>Powered Descent</u>: Thrusters (+Parachute System when applicable) (Horizontal and Vertical Velocity Control)
 - □ Soft Landing \rightarrow significantly reduce risk at impact
 - **□** Very high mass descent system
 - ☐ Technology learning curve can be applied to airless bodies
- 3. Partially Controlled Descent: Parachute System + Thrusters (Horizontal Velocity Control) with Airbags on Landing
 - **☐** Reduce horizontal velocity → reduce risk at impact
 - **☐** Higher mass system

1) Passive Descent

- Higher Risk as no control is implemented on descent
- European Heritage from Huygens Entry & Descent System
 - Similar to Mars entry since
 Huygens was deployed at a
 very high altitude where
 atmospheric density is similar
 to that encountered on Mars
 - Learning curve from Beagle 2
 - Over-dimension EDLS
 - Extensive ground test and verification programme
 - Telemetry during descent

2) Powered Descent (Soft Landing)

- Reduction in velocity for landing reduces risk
 But....
- NO HERITAGE IN ESA or Member States
 - Time constraints for an early launch in the 2011 window do not permit the development of a powered descent system
 - Design phase (including learning curve from other agency's
 - Extensive test and validation phase
- Extremely mass constraining
- Key long term technology for Moon/Mercury/Europa

3) Partially Controlled Descent

- Provides Horizontal & some vertical Velocity Control
- Reduces Risk on Landing
 - Optimizes conditions for airbag impact
- No Technology Heritage in Europe → Immediate Developments Required
 - Control Sensors
 - Thrusters
 - Airbags/parachutes/GNC/ System development

MDL- A Possible Descent Profile

Airbags

- Permits Hard Landing
 - both Passive and Controlled Descents
- Limited heritage in Europe →
 - Immediate Development Required
 - Extensive ground test campaign required
- Airbags must be released or retracted so as not to impede Lander after impact
 - Vented & sealed airbag tradeoff

Selection of MDL Landing Sites

- Landing Site Selection is Critical to Ensure Successful Descent and Landing of the MDL's
- Elevation limited due to the requirement for a thick enough column of atmosphere to allow sufficient deceleration and safe landing
 - MER A, MER B, elev. < -1 km & Viking 1 /2, elev. < -3km)
 - Lower landing elevation leads to greater margin in EDLS (but may bias science)
- Latitude limited by power requirements
 - constrained by use of solar cells
 - preliminary limit : -35 deg to +35 deg
- Landing sites should be scientifically important for
 - Exobiology
 - Geophysics

Current or Attempted Landing Sites

Possible Payloads (1): Beagle 2

Instrument	Mass [g]	Power [W]
Gas Analysis Package	5740	
Environmental Sensor	0.156	
Two Stereo Cameras	350	1
X-ray spectrometer	154	3.9
Microscope	205	
Mössbauer	540	3
Spectrometer		
Rock Corer Grinder	348	6
PLUTO (incl.	890	3
deployment unit)		
Total	8.2 kg	

Payload available ~ 10 kg

Possible Payload (2): Netlander Payload

Instrument	Mass	Power	Status
	[g]	[W]	
ATMIS: Atmospheric Sensors	855	0.43	Beadboard
SEISMO: Seismometer	1700	0.5	Breadboard
(VBB+SP)			
PANCAM: Panoramic	1860		Breadboard
Camera (incl. boom)			
ARES (ELF): Electric Field	100	0.3	Study?
MAG: Magnetometer	210	0.25	Flight unit
GPR: Ground Penetrating	460		Study
Radar			
Microphone	50		
NEIGE: Ionosphere &	300		
Geodesy Experiment			
SPICE: Soil Properties	50		Breadboard
Total	5.6 kg		

Payload available ~ 10 kg

Possible Payload (3): Sub-surface sampler

- Mole available by 2011
 - Can be configured for geophysics or exobiology
- Mole carrying the HP3 (Heat Flow and Physical Properties Package)
 - HP3-TEM (Thermal Excitation and Measurement Suite)
 - HP3-DEN (Densitometer)
 - HP3-DACTIL (Depth, Accelerometry and Tilt Measurements)
- Mole carrying exobiology package
 - ATR (Attenuated Total Reflection Spectroscopy)
 - Optically stimulated Luminescence dating
 - Raman spectrometer

The only way is down

Comparison between PLUTO and the new Instrumented Mole System (ISM)

	PLUTO	ISM
Purpose	Sample Collection	Instrument Carrier
Retrievable	Yes	No
P/L	No	Yes
Mass, Power, Size	890 g, 3 W, 280x20mm	1110 g, 3W, 330x25mm
Penetr. Depth [m]	1.5	5
Penetr. Speed	1.5 m in 1.16 h	5 m in 5.7 h
Status	Flight Model (Beagle 2)	Functional and tested Breadboard in 2005

Subsurface Measurements

Instrument Packages for the ISM

The same				
	HP ³	ATR	μRaman	XRS
Phys. Prop.	X			
Mineralogy Chemistry		X	X	X
Exobiology		X	X	
Development Status		e dev. a 2006	stu	dy

HP3 – Heat Flow Physical Properties Package
ATR – Attenuated Total Reflection Spectroscopy

µRaman – Front end in ISM, main instrument on Lander

XRS – X-ray spectrometer

Mars Demonstration Lander Study Heritage

- Two relevant studies
 - D-Sci Mars Network Science study
 (4 Landers, 92 kg with improved EDLS, hyperbolic insertion)
 - Aurora Mars Demo Lander
 (1 Lander 250 kg, partial controlled descent, hyperbolic insertion)
- Mars Network Science Study looked at the re-use of MEX technology to deliver a set of Landers to Mars & provide communications. Limited study of EDLS & Landers

Mars Demonstration Lander Proposed Approach

Top level assumptions

- → Soyuz Fregat SF2b from Kourou
- → Launch to Highly Elliptical Orbit prior to Earth Escape (to maximize mass)
- → Adapted and Optimized MEX carrier
 - → Provide communications relay and possible orbiter P/L

Lander assumptions

- → for 2 Landers, ~150 kg each
- **→** Released from Mars elliptical orbit (comm. during descent)
- → 40 kg surface element including a 10 kg payload
- → Design significant margins to over-dimension the EDLS
- **→** Communications during descent and landing
- **→** Landers released independently in a phased manner to two different landing sites

2 Landers

- > Increases probability of a successful landing
- Increased landing test data
- Increased Science return (consider subsurface science)

Study needs to be conducted urgently to ensure schedule!

Mars Demonstration Lander Status & Needs

Status:

- No demonstrated European capability of a safe landing on high-gravity planetary body with low atmospheric density
- Demonstration required of the EDLS before taking the next logical steps for any strategic phased exploration programme
 - Surface networks
 - Surface mobility
 - Deep subsurface studies
- Improved Lander (Beagle 2/NetLander-class) is logical first step

Development needs:

- Robust system with partial descent control, to cope with the uncertain environment (pressure, temperature, wind, terrain)
- Telemetry of critical EDLS parameters during Descent & Landing
- Consolidate end-to-end European EDLS, with priorities (in order):
 - Airbags, Descent Thrusters and GN&C, Parachutes, Front Shield,
 - System validation (qualification, test & analysis) over a wide range of external parameters

Mars Demonstration Lander Development Needs

	Item	Needs
EDLS	Spin-up & Eject	Increased accuracy
	Mechanism	 Huygens-derived design, with lower mass
	Back Cover	Increase in size
	Front Shield	Increase in size
	Parachutes	Optimisation and test
	Thrusters	Thrusters for velocity control during descent
	GN&C	Camera and Radar or LIDAR for descent control
	Airbags	Optimised sizing and pressure
		 Inflation, drop, long-term storage testing
		European development
		 Russian expertise (Netlander connection) may be exploited
	System	EDLS Analysis and Test
	Validation &	 Analysis and delta testing of all mechanisms
	Testing	Software independent validation
		 End-to-end functional testing on ground model
Surface	Structure	 Increased size, ruggedisation and repackaging
Module	Power	 Larger batteries and battery charging (Tx powered during descent, Rx permanently powered)
	Avionics	 Redundant electronics to improve overall system reliability
		 External antenna for transmission during descent
	Payload	 Additional European instruments (sub-surface package)
		 Core payload (on both landers) plus add-ons

Mars Demonstration Lander Mission

- Launch: November 2011 (Backup 2013)
- Intermediate Earth HEO
 - ☐ Provides Increase in Available S/C + Lander(s) Mass
- Ballistic Mars Transfer (transfer time ~ 10 months)
- Mars Elliptical Orbit
 - **☐** Needs optimization for mass/communications/power
 - ☐ Lander(s) will be released in a phased manner from Orbit
 - Reduce Entry Velocity
 - Better Control of Entry Conditions
 - Ability to Analyze Atmosphere Prior to Descent.
 - Orbit Insertion in Good Weather
 - Permit Communication During Descent and Landing

Mars Demonstration Lander: S/C Orbiter Design

- Mars Express Heritage
 - Propulsion Subsystem
 - Thermal Subsystem
 - Avionics and Data Handling
 - Power Subsystem (with updated solar array – (increased efficiency low mass)

- Adapted Structure for 2 Landers
- Other
 - Tanks

From Mars Network Science Study (D-SCI)

Recommendations from Beagle 2 Inquiry Board

- Robust Design Margins
- Telemetry during critical phases (entry, descent,..)
- Stringent testing process for all systems (parachutes, airbags, release mechanisms, etc.)
- Redundancy for entry detection event
- •

Immediate Steps and Development

- Detailed consistent Lander study with Technology Development Plan (TDP)
 - → Start ASAP, Complete by Q4 2005
- Key TDP items to initiate now:
 - Airbag System
 - Controlled Descent System

Activities & Schedule (Launch in 2011)

Conclusion

- A European Lander Mission to Mars appears:
 - Doable in 2011 provided work start immediately
 - Could prepare the road for larger European endeavors to Mars – Rovers, deep subsurface studies
 - Would provide serious Martian scientific return
 - Could sample subsurface down to 5 m
- The Mars Demonstration Lander would allow:
 - A phased technology development for future Mars exploration
 - Longer term spin-off on other science missions
 - Important step for ESA Science, Exploration & Technical Directorates

