

We need a better knowledge of <u>formation & evolution</u> of stars and planets

stellar formation & evolution theory is essential for:

- measuring ages in the universe
- understanding chemical evolution of the universe

planet formation & evolution theory is essential for:
understanding the origin of earth and life
determining whether life is likely to exist
elsewhere in the universe

We don't have a solid understanding of <u>formation</u> <u>& evolution</u> of stars and planetary systems

stellar ages are model dependent and often unreliable:

- ages of globular clusters > age of the universe ?
- ages of brown dwarfs in clusters ≠ ages of clusters (turn-off) ?
 etc...

although WMAP/Planck provide an estimate of the age of the universe the age ladder of the universe is still unreliable (climb at your own risk!)

we do not have a sufficient understanding of:

- the mechanisms controlling orbital eccentricities
- the mechanisms controlling migration
- the planet / star metallicity connection
- the distribution of planets and their characteristics

we lack statistical knowledge of planet and parent star properties

<u>Magnetic fields</u> play a major role in the formation & evolution of stars & planets

Magnetic fields are responsible for:

- the loss of angular momentum, necessary for stellar formation
- some of the star-planet interactions
- stellar activity = a threat or a catalyst for life
- shielding planets from stellar radiation
- etc...

But so far, magnetic fields have been ignored, or grossly parameterized in our modeling of stellar/planetary formation & evolution

The formation and evolution of stars, their planets, and their magnetic fields are <u>intrically related and must be studied jointly</u>

- stars and planets are born together from the same material - stars affect their planets (radiation, particles, etc...) - planets affect the evolution of their parent stars . angular momentum, . enrichment by collision, . magnetic interaction, etc... - magnetic fields play a major role in this common history . coupling the star with the accretion disk, . controlling stellar winds in crucial phases, . transporting angular momentum inside stars, . protecting planets from particle bombardment, . possibly halting planet inward migration, etc...

We lack sufficient <u>observational constraints</u> for these three fundamental problems

Proposed concept: study these three issues simultaneously by three complementary approaches on the same stars

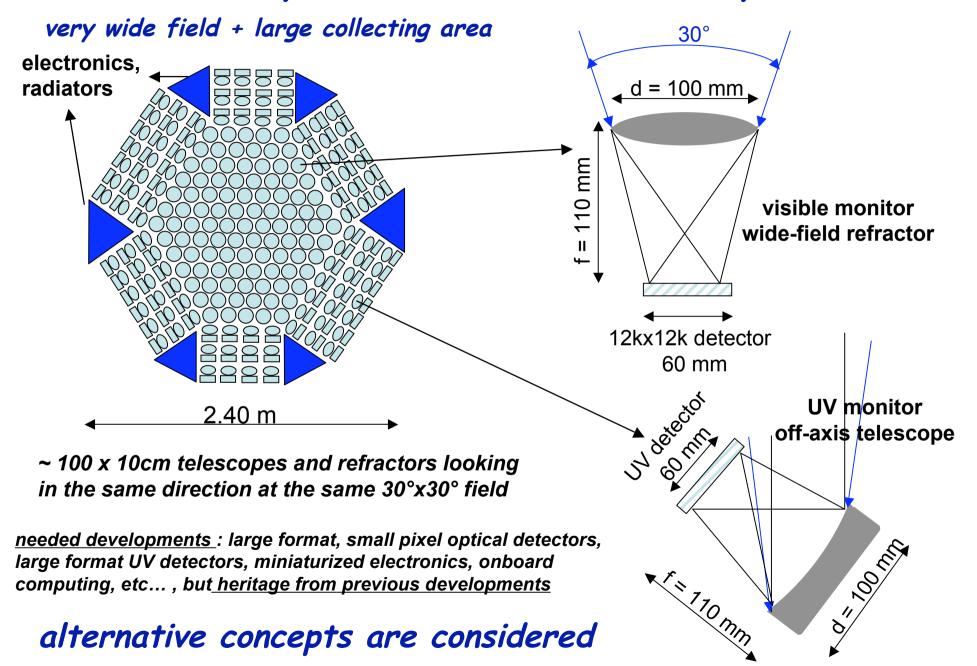
select a very large sample of stars (>100,000)
 of all ages and masses

detect and study planets around these stars,
 via planetary transit observations

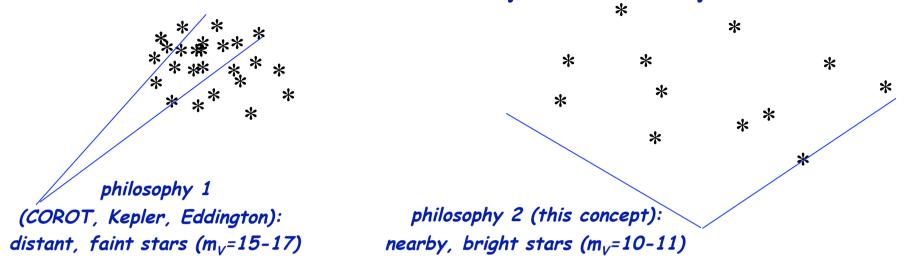
- study internal structure and internal rotation of the same stars, via asteroseismology

detect, characterize and map magnetic fields in these stars,
 via UV monitoring and tomographic techniques

Observational concept


 observe a large number of relatively bright stars (m_V≤11) maximize field of view: 140 m_V≤11 stars per sq. deg.
 30° x 30° : ≥ 120,000 stars unbiased stellar sample in terms of mass, age, metallicity, etc... include open clusters of various ages, old pop II stars, etc...

 perform very long-term, high precision, visible light monitoring maximize monitoring duration (5 yrs?): 1-2 yr planetary orbits, very high precision seismology aim at a relative photometric precision better than


2. 10⁻⁵ in 1 hr for m_V=11 : transits of sub-earth sized planets 1. 10⁻⁶ in 2 weeks for m_V=11 : seismology of solar-like oscillations → collecting area ≥ 1 m²

 perform at the same time very long-term UV monitoring several wide and narrow UV bands sensitive to stellar activity

Example of instrumental concept

Interest of this concept for exoplanets

when we focus on bright stars (but with unbiased sample), we have:

- simultaneous seismology (interior, age) and UV-monitoring (activity)
- high signal-to-noise ratio: smaller planets, higher precision, etc...
- better rejection of false events (background EB, confusion, etc...)
- bright & nearby stars: opportunity for further studies (spectroscopic and astrometric follow-up, interferometric imaging, etc...)
- . very wide field: gigantic star sample when fainter stars are included (cf talk by S. Desidera: 900,000 GK dwarfs m_v≤14.3)
- . UV monitoring: some characterization of planet atmospheres

Interest of this concept for stellar interiors

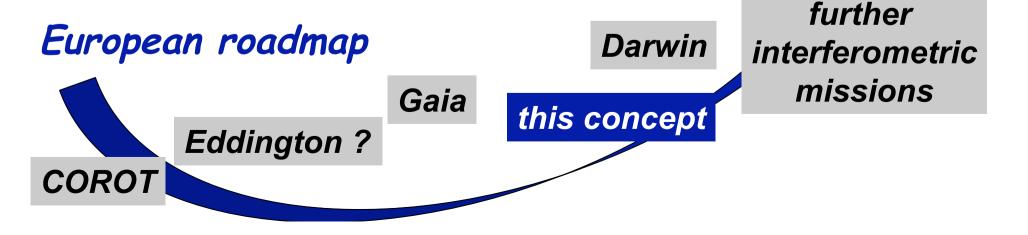
Seismology down to solar-like oscillation level for ≥ 120,000 stars !

- 1200 times COROT, 5 times Eddington
- 5 year duration: very high precision on frequencies, and therefore on internal structure & rotation + detection of internal B
- all types of stars, all masses, all ages
- 120,000 stars = significant fraction of Gaia/RVS targets provide the age of these stars = time coordinate (the missing observable)

Interest of this concept for stellar activity

Activity monitoring for \geq 120,000 stars, of all types !

- first ever gigantic survey for stellar activity
- ~ 100 times Mount Wilson survey
- 5 year duration: study of activity cycles


 assess the level of « noise » induced by activity on optical light curves and correct for it in planetary transit and seismology studies

Conclusion: a european roadmap

- the proposed concept will study
- planet characterization
- stellar formation and evolution
- stellar magnetic activity and its role in the evolution of stars and planets.

• needs: - very wide-field for $\geq 120,000$ stars $m_V \leq 11$

- very high precision photometric monitoring
- very long duration monitoring
- will open the road for further studies
 - high resolution spectroscopy
 - interferometric imaging of planetary surfaces
 - high degree oscillation modes in nearby stars

at the same time on the same targets

visible + UV