

Plasma Thruster Plume Simulation: Effect of the Plasma Quasi Neutrality Hypothesis

<u>A. Passaro</u>*, L.Biagioni*, and A.Vicini** * *Centrospazio-CPR* – 56121 Pisa, Italy ** Alta S.p.A. – 56121 Pisa, Italy

34th AIAA Plasmadynamics and Lasers Conference 23-26 June 2003, Orlando - Florida

Presentation Overview

- Introduction
- PICPluS-2 code overview
- Code validation results
- Quasi-neutrality effect analysis
- Conclusions

Introduction (1)

Electric thrusters for spacecraft

• Hall Effect Thrusters and Gridded Ion Engines are consolidating as two of the most effective new spacecraft technologies

5 kW class HET are developed for application in 5-8 year timeframe (next generation GEO telecoms, e.g. Alphabus), 1 kW class models were successfully flown on Russian and Western spacecraft (ESA's SMART-1)

• Several GIE were already successfully employed in space (NASA's Deep Space 1, ESA's Artemis)

Issues about plasma thruster integration with spacecraft

• Direct ion impingement onto spacecraft surfaces, sputtering, re-deposition and degradation of material properties, e.g. solar panels

- Back flow ion impingement caused by charge exchange plasma collisions
- Erosion of acceleration channel walls/grids: erosion products expansion and redeposition
- EMI compatibility issues, plasma interference with telecommunication signals

Therefore necessity of:

- Appropriate numerical simulation of device operation
- In flight and vacuum chamber testing

Issues about plasma plume simulations

• Detailed physical models (plasma non-neutrality, effect of different plasma species, effect of collisions and their type)

- Reliable and fast numerical methods (Poisson solvers, particle-mesh sorting algorithms, ...)
- Realistic data for injection and interaction parameters (possibly experimental)
- Realistic geometric configurations (proper assessment of electric/magnetic interactions and spacecraft surface interactions)
- Validation with respect to vacuum chamber and flight experimental data

EP activity

- Presently involved in virtually all HET/GIE development efforts in Europe
- Own technology (HET, DS-HET) or in partership with SNECMA Moteurs, Astrium Ltd & Gmbh, QinetiQ, ...
- Operating the best array of EP test facilities in Europe, 10 UHV test facilities with size up to 5.7 x 12 m and pumping speed up to 1,500,000 l/s [Xe]

Computational activities

• EP computational activity centered on plume simulation, integration with spacecraft, and complex laboratory configuration simulations

- hybrid PIC (kinetic ions+non isothermal fluid electrons), 2D axially symmetric, non neutral (SOR Poisson solver) for accurate plume calculation and impact of backflow of vehicle surface (simple geometries)

- charge neutral DSMC, 2D axially symmetric, for analysis of complex configurations, e.g. thruster in vacuum chamber with realistic pumping arrangement

PICPIuS-2 – Characteristics (1)

PICPluS features

- 2D axisym, 3 components of velocity
- Structured grid with variable cell size (scaled to local Debye length)
- Xe+, Xe++, Xe simulated particles
- Elastic, CEX collisions (2 different algorithms)
- Effect of background pressure
- Input from experimental distributions or from external simulations (magnetostatic FEM)
- Simulated engines: Hall Effect Thruster or Gridded Ion Engine

Ion Number Density: log scale

Particle Species	PICPluS v.2.0
Xe ⁺ ions	Simulated
Xe ⁺² ions	Simulated
Xe ⁺ⁿ ions	Can be added
Xe atoms	Can be added
CEX ions	Simulated

Particle species presently simulated

PICPIuS-2 – Characteristics (2)

Algorithms

- Particle in Cell with Ruyten weighting
- Nanbu-Kitatani **TPMC** or Szabo **MCC** collisions
- 3 models for collision cross-sections
- Potential from Poisson solver (SOR method, Chebishev acceleration, checker-board ordering) or quasi-neutrality (Boltzmann relation)
- 3 models for electron temperature (constant, adiabatic, first order Chapman-Enskog) or experimental distribution
- Full **DSMC** option for neutrals
- All input fields/distributions from experiments, simulations, or simplified models

Electron temperature models

Magnetic field: from experiments or simulations

PICPIuS-2 – Characteristics (3)

Outputs

- Instantaneous and averaged fields at steady state (species by species)
- Instantaneous and averaged thrust and beam ion current
- Ion current density measured with virtual Faraday's probe rakes
- Impact history on (possible) solid external surface and related statistics

Code results compared with similar programs and experimental data from literature and in-house tests:

- Four test cases for HET and one for GIE
- All test cases achieved stationary conditions in about 40,000 time steps
- Computed thrust and ion beam current within $\pm 1\%$ of measured values
- Peak on axis (GIE) and slightly low current density at high angles (HET) are usually seen

Thruster Model	SPT-100	SPT-100	SPT-100	Alta-XH5	MUSES-C		
Mass Flow Rate [mg/s]	4.99	5.12	5.084	9.2	0.21		
Discharge Voltage [V]	300	300	300	350	1500		
Discharge Current [A]	4.5	4.5	4.5	11.16	0.14		
Background Pressure [mbar]	2.9-10 ⁻⁶	4·10 ⁻⁵	5.32-10 ⁻⁵	8.32-1 0 ⁻⁵	2.0-10-6		
Thrust [mN]	84.54	90.39	84.07	181.6	8.85		
Ion Beam Current [A]	4.61	4.82	3.87	8.96	0.149		
Domain Size [m]	1.2 x 1.5	1.2 x 1.5	1.2 x 1.5	1.0 x 1.5	1.0 x 2.5		
Total Particle number	~110-6	~110 ⁻⁶	~110 ⁻⁶	~1.5.10 ⁻⁶	~ 0.5-10 ⁻⁶		
Reference	Manzella <i>1995</i>	Kim <i>1996</i>	King <i>199</i> 8	Biagioni 2003	Matsushiro 2003		
Test case matrix							

PICPIuS-2 Validation

- Injection ion temperature has no big impact on results
- Electron temperature has significant effect, especially for ion distribution and impact energy of backflow CEX

• Divergence angle at inflow boundary has largest impact on current density and plasma field

Copyright ALTA & CENTROSPAZIO 2003. Reproduction, distribution or use of this document without prior written authorisation is forbidden.

SPT-100 Simulations

Optimal injection distribution (inflow boundary) fitting near and medium distance measurements of current density:

- Gaussian distribution for number density
- Linear distribution (with radius) for average divergence angle
- Gaussian distribution of actual divergence angle around the average value

Good agreement for different background pressure and test conditions (in particular different fraction of double ionized propellant)

SPT-100 Simulations

SPT-100 Simulations

Ion current density

Alta-XH5 Simulations

• Optimal distribution for SPT-100 scaled to 5 kW thruster, showing good agreement with measurement

• Measurement of external magnetic field performed, no significant effect on simulated current density over wide range of variation

MUSES-C Ion Engine Simulations

Small GIE, excellent agreement obtained with simple injection distribution:

- Gaussian distribution for number density
- Linear distribution for divergence angle

Strong **peak on thruster axis**: issue evidenced with other PIC codes, presently under further investigation

Radial number density profile comparison

Quasi Neutrality – Test Cases

- Quasi-neutrality examined from physical and numerical points of view
- Three configurations chosen:
 - 2 for HET (SPT-100, low/high background pressure)
 - 1 for GIE (MUSES-C)
- Simulations runs performed on 2.5 GHz P4 1Gb RAM, different conditions and models
- As expected plasma appears mostly neutral:
 non neutral spots in regions where gradients are stronger
 - unbalance always less than 1% ion charge density

Run	Test	QN/	Te	Magnetic	Collision
#	Case	Poi	Model	Field	Model
1	Kim	POI	Const.	ON	А
2	Kim	QN	Const.	ON	А
3	King	POI	Const.	ON	А
4	King	QN	Const	ON	А
5	King	QN	Const	ON	В
6	King	QN	Eq.2b	ON	А
7	Ion	POI	Laplace	OFF	А
8	Ion	QN	Laplace	OFF	А

Test case matrix

Computational cost of Poisson and quasi-neutrality solvers increases with grid size and total number of simulated molecules, but:

- QN not always the winner, for fine grid and large number of simulated particles Poisson can be faster
- QN more stable in any condition, especially for unregular grid geometry

Quasi Neutrality – Ion Density

- HET: no significant difference between Poisson solver and QN approach
- GIE: differences in **back-flow region**, QN under-predicting ion density

• Ion current density and backflow impact energy distribution not significant affected by QN approach

Code Developments

- Upgrade to 3D configurations (3D version presently under alpha testing)
- Routines for plasma-wall interaction (partnership with Univ. Bari)
- Routines for re-deposition of sputtered particles (DSMC method)
- Extension to HET inner channel (ionization, acceleration, ...)
- Integration of channel/plume codes

New Test Cases

- Double Stage HET (collaboration with SNECMA Moteurs)
- HET Beam steering (3D, collaboration with SNECMA Moteurs)
- HET cluster on realistic geometry (3D)

Conclusions

• Effect of plasma quasi-neutrality (QN) assumption on ion/plasma thruster plume simulations was examined using 2D hybrid PIC code

• Validation runs show that consistently good agreement can be obtained with respect to experimental data: key role played by plasma inflow boundary

• Effect of QN is mostly small except for backflow region of GIE cases, where charge density is under-predicted by QN algorithm

• Poisson solver solution is not significantly slower than QN approach, although algorithm is more sensitive to mesh geometry and initial conditions

• Few issues still to be addressed (especially for GIE), probably related to inconsistencies in hybrid formulation of plasma model

